高考数学专题三_数列与极限

高考数学专题三_数列与极限

ID:30029293

大小:1.19 MB

页数:15页

时间:2018-12-26

高考数学专题三_数列与极限_第1页
高考数学专题三_数列与极限_第2页
高考数学专题三_数列与极限_第3页
高考数学专题三_数列与极限_第4页
高考数学专题三_数列与极限_第5页
资源描述:

《高考数学专题三_数列与极限》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、专题三 数列与极限问题1:等差、等比数列的综合问题“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果例1:设等比数列{an}的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lgan}的前多少项和最大?(取lg2=03,lg3=04)思路分析突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n项和有最大值,一定是该数列中前面

2、是正数,后面是负数,当然各正数之和最大;另外,等差数列Sn是n的二次函数,也可由函数解析式求最值解法一设公比为q,项数为2m,m∈N*,依题意有,化简得设数列{lgan}前n项和为Sn,则Sn=lga1+lg(a1q2)+…+lg(a1qn-1)=lg(a1n·q1+2+…+(n-1))=nlga1+n(n-1)·lgq=n(2lg2+lg3)-n(n-1)lg3=(-)·n2+(2lg2+lg3)·n可见,当n=时,Sn最大而=5,故{lgan}的前5项和最大解法二接前,,于是lgan=lg[108()n-1]=lg108+(n-1)lg,∴数列{lga

3、n}是以lg108为首项,以lg为公差的等差数列,令lgan≥0,得2lg2-(n-4)lg3≥0,∴n≤=55由于n∈N*,可见数列{lgan}的前5项和最大点评本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力演变1 等差数列{an}的前m项和为30,前2m项和为100,则它前3m项的和为_______点拨与提示:本题可以回到数列的基本量,列出关于的方程组,然后求解;或运用等差数列的性质求解.问题2:函数与数列的综合题数列是一特殊的函数,其定义域为正整数集,且是自变量从小到大变化时函数值的序列。注意深刻理解函数

4、性质对数列的影响,分析题目特征,探寻解题切入点.例2:已知函数f(x)=(x<-2)(1) 求f(x)的反函数f--1(x); (2) 设a1=1,=-f--1(an)(n∈N*),求an;(3)设Sn=a12+a22+…+an2,bn=Sn+1-Sn是否存在最小正整数m,使得对任意n∈N*,有bn<成立?若存在,求出m的值;若不存在,说明理由思路分析(2)问由式子得=4,构造等差数列{},从而求得an,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想解(1)设y=,∵x<-2,∴x=-,即y=f--1(x)=-(x>0)(2)∵,∴{}是公

5、差为4的等差数列,∵a1=1,=+4(n-1)=4n-3,∵an>0,∴an=(3)bn=Sn+1-Sn=an+12=,由bn<,得m>,设g(n)=,∵g(n)=在n∈N*上是减函数,∴g(n)的最大值是g(1)=5,∴m>5,存在最小正整数m=6,使对任意n∈N*有bn<成立点评 本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题着重考查学生的逻辑分析能力本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{}为桥梁求an,不易突破演变2:设,定义,其中

6、n∈N*.(1)求数列{an}的通项公式;(2)若,其中n∈N*,试比较9与大小,并说明理由.点拨与提示:(1)找出数列{an}的递推关第,进而判断数列的类型;(2)根据特征,找出求和的匹配方法。问题3:数列与解析几何。数列与解析几何综合题,是今后高考命题的重点内容之一,求解时要充分利用数列、解析几何的概念、性质,并结合图形求解.例3.在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,为公差的等差数列.⑴求点的坐标;⑵设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,记与抛物线相切于的直线的斜率为,求:

7、.解:(1)(2)的对称轴垂直于轴,且顶点为.设的方程为:把代入上式,得,的方程为:。,=点评:本例为数列与解析几何的综合题,难度较大。(1)、(2)两问运用几何知识算出.演变3.已知抛物线,过原点作斜率1的直线交抛物线于第一象限内一点,又过点作斜率为的直线交抛物线于点,再过作斜率为的直线交抛物线于点,,如此继续,一般地,过点作斜率为的直线交抛物线于点,设点.(Ⅰ)令,求证:数列是等比数列.(Ⅱ)设数列的前项和为,试比较与的大小. 点拨与提示:(1)由抛物线的方程和斜率公式得到,从而求出的通项公式;(2)用数学归纳法证明.问题4、数列与不等式  数列与不等

8、式相联系的综合题也是常考题型,要注意把数列的逆推性与不等式问题的思

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。