双曲线地简单几何性质(教案设计)

双曲线地简单几何性质(教案设计)

ID:30016456

大小:337.50 KB

页数:8页

时间:2018-12-26

双曲线地简单几何性质(教案设计)_第1页
双曲线地简单几何性质(教案设计)_第2页
双曲线地简单几何性质(教案设计)_第3页
双曲线地简单几何性质(教案设计)_第4页
双曲线地简单几何性质(教案设计)_第5页
资源描述:

《双曲线地简单几何性质(教案设计)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案教案普通高中课程标准选修2-12.3.2双曲线的简单几何性质(第一课时)教材的地位与作用本节内容是在学习了曲线与方程、椭圆及其标准方程和简单几何性质、双曲线及其标准方程的基础上,进一步通过双曲线的标准方程推导研究双曲线的几何性质。(可以类比椭圆的几何性质得到双曲线的几何性质。)通过本节课的学习,使学生深刻理解双曲线的几何性质,体验数学中的类比、联想、数形结合、转化等思想方法。二、教学目标(一)知识与技能1、了解双曲线的范围、对称性、顶点、离心率。2、理解双曲线的渐近线。(二)过程与方法通

2、过联想椭圆几何性质的推导方法,用类比方法以双曲线标准方程为工具推导双曲线的几何性质,从而培养学生的观察能力、联想类比能力。(三)情感态度与价值观让学生充分体验探索、发现数学知识的过程,深刻认识“数”与“形”的关系,培养学生勇于攀登科学高峰的精神。三、教学重点难点双曲线的渐近线既是重点也是难点。四、教学过程(一)课题引入1、前面我们学习了椭圆及其标准方程,并由标准方程推导出椭圆的几何性质,椭圆的几何性质有哪些?(教师用课件引导学生复习椭圆的几何性质,双曲线及其标准方程。)今天我们以标准方程为工具,研究

3、双曲线的几何性质。【板书】:双曲线的性质2、双曲线有哪些性质呢?(范围、对称性、顶点、离心率、渐近线。)3、双曲线的这些性质具体是什么?如何推导?请同学们对比椭圆的几何性质的推导方法,推导出双曲线的几何性质。(讨论)精彩文档实用标准文案(二)双曲线的性质1、范围:把双曲线方程变形为。因为,因此,即,所以。又因为,故。【板书】:1、范围:,。2、对称性:下面我们来讨论双曲线的的对称性,哪位同学能根据双曲线的标准方程,判断它的对称性?在标准方程中,把换成,或把换成,或把,同时换成,时,方程都不变,所以图

4、形关于轴、轴和原点都是对称的。【板书】:2、对称性:双曲线的对称轴是轴、轴,原点是它的对称中心。3、顶点:提问:(1)双曲线有几个顶点?顶点的坐标是什么?在标准方程中,令得;令,则无解。这说明双曲线有两个顶点,。(2)如图,对称轴上位于两顶点间的线段叫做双曲线精彩文档实用标准文案的实轴,其长度为。尽管此双曲线与轴无公共点,但轴上的两个特殊的点。我们称线段为双曲线的虚轴,其长度为。【板书】:3、顶点:,称为实轴,为虚轴,其中。特别地,当时,双曲线的实轴长与虚轴长相等,称其为等轴双曲线。4、离心率【板书

5、】:4、定义双曲线的焦距与实轴长的比,叫做双曲线的离心率。提问:(1)双曲线的离心率与椭圆的离心率有什么不同?(2)双曲线的形状与离心率有什么关系?由等式,可知:【板书】:双曲线的离心率且越大双曲线的开口就越开阔。5、渐近线:提问:(1)椭圆与双曲线还有一个最大的不同是曲线的范围及其走向。曲线的范围与走向是我们研究曲线性质的一个重要方面,因为它可以为我们绘制曲线的草图提供依据,那么请大家想一想双曲线的走向是什么样的呢?谁能比较准确地画出双曲线?在第一象限内双曲线可以化为,是增函数。因为,所以,即,这

6、个不等式意味着什么?(它表示直线下方半个平面区域。)(用刚才作矩形的方法画出两条直线,然后指出区域。)由于双曲线和直线都关于坐标轴对称,所以双曲线(两支)在直线之间,这样,我们进一步缩小了双曲线所在区域的范围。提问:(2)直线与双曲线有什么联系呢?(用几何画板课件演示):精彩文档实用标准文案随着无限增大时,点到直线的距离就无限趋于零。【板书】:5、渐近线:直线叫做双曲线的渐近线;直线叫做双曲线的渐近线。练习:求下列双曲线的渐近线方程(写成直线的一般式)。(1)的渐近线方程是:(2)的渐近线方程是:(

7、3)的渐近线方程是:(4)的渐近线方程是:可以发现,双曲线方程与其渐近线之间似乎存在某种规律。(启发学生讨论,归纳)。把双曲线方程中的常数项改为零,会怎样呢?,即,这就表示两条渐近线。【板书】:结论:把双曲线标准方程中等号右边的1改成0,然后变形,即可得其渐近线方程。(三)小结精彩文档实用标准文案标准方程图形性质焦点范围,对称性关于轴,轴,原点都对称顶点离心率渐近线(四)典型例题与变式训练例1、求双曲线的半实轴长和半虚轴长、焦点坐标、离心率、渐近线方程。解:把方程化为标准方程由此可知,半实轴长,半虚

8、轴长;焦点坐标是;离心率;渐近线方程为。归纳总结:首先把方程化为标准方程,看准焦点在哪条轴上,得到a,b,c的值,再由双曲线的几何性质求解。精彩文档实用标准文案【变式训练】:求双曲线的半实轴长和半虚轴长、焦点坐标、离心率、渐近线方程。例1、求适合下列条件的双曲线标准方程(1)顶点在轴上,虚轴长为12,离心率为;(2)顶点间距离为6,渐近线方程为;解:(1)设双曲线的标准方程为。由题意知,且。∴∴所求双曲线方程为。(2)当焦点在轴上时,由且,∴。∴所求双曲线方程为当焦点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。