an introduction to stochastic differential equations (evans)

an introduction to stochastic differential equations (evans)

ID:30010493

大小:1.28 MB

页数:139页

时间:2018-12-26

an introduction to stochastic differential equations (evans)_第1页
an introduction to stochastic differential equations (evans)_第2页
an introduction to stochastic differential equations (evans)_第3页
an introduction to stochastic differential equations (evans)_第4页
an introduction to stochastic differential equations (evans)_第5页
资源描述:

《an introduction to stochastic differential equations (evans)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ANINTRODUCTIONTOSTOCHASTICDIFFERENTIALEQUATIONSVERSION1.2LawrenceC.EvansDepartmentofMathematicsUCBerkeleyChapter1:IntroductionChapter2:AcrashcourseinbasicprobabilitytheoryChapter3:Brownianmotionand“whitenoise”Chapter4:Stochasticintegrals,Itˆo’sformulaChapter5:StochasticdifferentialequationsChapter6:

2、ApplicationsAppendicesExercisesReferences1PREFACEThesenotessurvey,withouttoomanyprecisedetails,thebasictheoryofprobability,randomdifferentialequationsandsomeapplications.Stochasticdifferentialequationsisusually,andjustly,regardedasagraduatelevelsubject.Areallycarefultreatmentassumesthestudents’famili

3、aritywithprobabilitytheory,measuretheory,ordinarydifferentialequations,andpartialdifferentialequationsaswell.ButasanexperimentItriedtodesigntheselecturessothatstartinggraduatestudents(andmaybereallystrongundergraduates)canfollowmostofthetheory,atthecostofsomeomissionofdetailandprecision.Iforinstanced

4、ownplayedmostmeasuretheoreticissues,butdidemphasizetheintuitiveideaofσ–algebrasas“containinginformation”.Similarly,I“prove”manyformulasbyconfirmingthemineasycases(forsimplerandomvariablesorforstepfunctions),andthenjuststatingthatbyapproximationtheserulesholdingeneral.Ialsodidnotreproduceinclasssomeo

5、fthemorecomplicatedproofsprovidedinthesenotes,althoughIdidtrytoexplaintheguidingideas.MythanksespeciallytoLisaGoldberg,whoseveralyearsagopresentedmyclasswithseverallecturesonfinancialapplications,andtoFraydounRezakhanlou,whohastaughtfromthesenotesandaddedseveralimprovements.IamalsogratefultoJonathan

6、Weareforseveralcomputersimulationsillustratingthetext.Thanksalsotomanyreaderswhohavefounderrors,especiallyRobertPiche,whoprovidedmewithanextensivelistoftyposandsuggestionsthatIhaveincorporatedintothislatestversionofthenotes.2CHAPTER1:INTRODUCTIONA.MOTIVATIONFixapointx∈Rnandconsiderthentheordinarydi

7、fferentialequation:0x˙(t)=b(x(t))(t>0)(ODE)x(0)=x0,whereb:Rn→Rnisagiven,smoothvectorfieldandthesolutionisthetrajectoryx(·):[0,∞)→Rn.TrajectoryofthedifferentialequationNotation.x(t)isthestateofthesystem

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。