资源描述:
《introduction to stochastic differential equations v1.2 (berkeley lecture notes) - l. evans》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ANINTRODUCTIONTOSTOCHASTICDIFFERENTIALEQUATIONSVERSION1.2LawrenceC.EvansDepartmentofMathematicsUCBerkeleyChapter1:IntroductionChapter2:AcrashcourseinbasicprobabilitytheoryChapter3:Brownianmotionand“whitenoise”Chapter4:Stochasticintegrals,Itˆo’sformulaChapter5:Stochasticdiff
2、erentialequationsChapter6:ApplicationsExercisesAppendicesReferences1PREFACETheseareanevolvingsetofnotesforMathematics195atUCBerkeley.Thiscourseisforadvancedundergraduatemathmajorsandsurveyswithouttoomanyprecisedetailsrandomdifferentialequationsandsomeapplications.Stochastic
3、differentialequationsisusually,andjustly,regardedasagraduatelevelsubject.Areallycarefultreatmentassumesthestudents’familiaritywithprobabilitytheory,measuretheory,ordinarydifferentialequations,andperhapspartialdifferentialequationsaswell.Thisisalltoomuchtoexpectofundergrads.Bu
4、twhitenoise,Brownianmotionandtherandomcalculusarewonderfultopics,toogoodforundergraduatestomissouton.ThereforeasanexperimentItriedtodesigntheselecturessothatstrongstudentscouldfollowmostofthetheory,atthecostofsomeomissionofdetailandprecision.Iforinstancedownplayedmostmeasu
5、retheoreticissues,butdidemphasizetheintuitiveideaofσ–algebrasas“containinginformation”.Similarly,I“prove”manyformulasbyconfirmingthemineasycases(forsimplerandomvariablesorforstepfunctions),andthenjuststatingthatbyapproximationtheserulesholdingeneral.Ialsodidnotreproduceincl
6、asssomeofthemorecomplicatedproofsprovidedinthesenotes,althoughIdidtrytoexplaintheguidingideas.MythanksespeciallytoLisaGoldberg,whoseveralyearsagopresentedtheclasswithseverallecturesonfinancialapplications,andtoFraydounRezakhanlou,whohastaughtfromthesenotesandaddedseveralimp
7、rovements.IamalsogratefultoJonathanWeareforseveralcomputersimulationsillustratingthetext.2CHAPTER1:INTRODUCTIONA.MOTIVATIONFixapointx∈Rnandconsiderthentheordinarydifferentialequation:0x˙(t)=b(x(t))(t>0)(ODE)x(0)=x0,whereb:Rn→Rnisagiven,smoothvectorfieldandthesolutionisthetr
8、ajectoryx(·):[0,∞)→Rn.TrajectoryofthedifferentialequationNotation.x(t)isthestateoft