An Introduction To Stochastic Partial Differential Equations(Walsh)

An Introduction To Stochastic Partial Differential Equations(Walsh)

ID:40048117

大小:5.87 MB

页数:175页

时间:2019-07-18

An Introduction To Stochastic Partial Differential Equations(Walsh)_第1页
An Introduction To Stochastic Partial Differential Equations(Walsh)_第2页
An Introduction To Stochastic Partial Differential Equations(Walsh)_第3页
An Introduction To Stochastic Partial Differential Equations(Walsh)_第4页
An Introduction To Stochastic Partial Differential Equations(Walsh)_第5页
An Introduction To Stochastic Partial Differential Equations(Walsh)_第6页
An Introduction To Stochastic Partial Differential Equations(Walsh)_第7页
An Introduction To Stochastic Partial Differential Equations(Walsh)_第8页
An Introduction To Stochastic Partial Differential Equations(Walsh)_第9页
An Introduction To Stochastic Partial Differential Equations(Walsh)_第10页
资源描述:

《An Introduction To Stochastic Partial Differential Equations(Walsh)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ANINTRODUCTIONTOSTOCHASTICPARTIALDIFFERENTIALEQUATIONSJohnB.WALSHThegeneralproblemisthis.Supposeoneisgivenaphysicalsystemgovernedbyapartialdifferentialequation.Supposethatthesystemisthenperturbedrandomly,perhapsbysomesortofawhitenoise.Howdoesitevolveintime?Thinkforexampleofaguitarcar

2、elesslyleftoutdoors.Ifu(x,t)isthepositionofoneofthestringsatthepointxandtimet,thenincalmairu(x,t)wouldsatisfythewaveequationu=u.However,ifattxxsandstormshouldblowup,thestringwouldbebombardedbyasuccessionofsandgrains.LetWrepresenttheintensityofthebombardmentatthepointxtxandtimet.Thenu

3、mberofgrainshittingthestringatagivenpointandtimewillbelargelyindependentofthenumberhittingatanotherpointandtime,sothat,aftersubtractingameanintensity,Wmaybeapproximatedbyawhitenoise,andthefinalequationisUtt(x,t)=Uxx(X,t)+W(x,t),whereWisawhitenoiseinbothtimeandspace,or,inotherwords,at

4、wo-parameterwhitenoise.Onepeculiarityofthisequation-notsurprisinginviewofthebehaviorofordinarystochasticdifferentialequations-isthatnoneofthepartialderivativesinitexist.However,onemayrewriteitasanintegralequation,andthenshowthatinthisformthereisasolutionwhichisacontinuous,thoughnon-d

5、ifferentiable,function.Inhigherdimensions-withadrumhead,say,ratherthanastring-eventhisfails:thesolutionturnsouttobeadistribution,notafunction.Thisisoneofthetechnicalbarriersinthesubject:onemustdealwithdistribution-valuedsolutions,andthishasgeneratedanumberofapproaches,mostinvolvingaf

6、airlyextensiveuseoffunctionalanalysis.267Ouraimistostudyacertainnumberofsuchstochasticpartialdifferentialequations,toseehowtheyarise,toseehowtheirsolutionsbehave,andtoexaminesometechniquesofsolution.Weshallconcentratemoreonparabolicequationsthanonhyperbolicorelliptic,andonequationsin

7、whichtheperturbationcomesfromsomethingakintowhitenoise.Inparticular,oneclassweshallstudyindetailarisesfromsystemsofbranchingdiffusions.TheseleadtolinearparabolicequationswhosesolutionsaregeneralizedOrnstein-Uhlenbeckprocesses,andincludethosestudiedbyIto,HolleyandStoock,Dawson,andothe

8、rs.Anotherre

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。