勾股定理的应用举例

勾股定理的应用举例

ID:29966556

大小:63.01 KB

页数:7页

时间:2018-12-25

勾股定理的应用举例_第1页
勾股定理的应用举例_第2页
勾股定理的应用举例_第3页
勾股定理的应用举例_第4页
勾股定理的应用举例_第5页
资源描述:

《勾股定理的应用举例》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第十四章勾股定理备课人:老师勾股定理的应用举例(一)教学目标1.知识目标(1)了解勾股定理的作用是“在直角三角形中已知两边求第三边”;而勾股逆定理的作用是由“三角形边的关系得出三角形是直角三角形”.(2)掌握勾股定理及其逆定理,运用勾股定理进行简单的长度计算.2.过程性目标(1)让学生亲自经历卷折圆柱.(2)让学生在亲自经历卷折圆柱中认识到圆柱的侧面展开图是一个长方形(矩形).(3)让学生通过观察、实验、归纳等手段,培养其将“实际问题转化为应用勾股定理解直角三角形的数学问题”的能力.(二)教学重点、难点教学重点:勾股定理的应用.教学难点:将实际问题转化

2、为“应用勾股定理及其逆定理解直角三角形的数学问题”.原因分析:1.例1中学生因为其空间想像能力有限,很难想到蚂蚁爬行的路径是什么,为此通过制作圆柱模型解决难题.2.例2中学生难找到要计算的具体线段.通过多媒体演示来启发学生的思维.教学突破点:突出重点的教学策略:通过回忆复习、例题、小结等,突出重点“勾股定理及其逆定理的应用”,(三)、教学过程教学过程设计意图复习 复习练习,引出课题例1、在Rt△ABC中,两条直角边分别为3,4,求斜边c的值?通过简单计算题的练习,帮助学生回顾勾股定理,加深定理的记忆理解,为新课作好准备第十四章勾股定理备课人:老师部分 

3、 答案:c=5.例2、在Rt△ABC中,一直角边分别为5,斜边为13,求另一直角边的长是多少?答案:另一直角边的长是12.小结:在上面两个小题中,我们应用了勾股定理:在Rt△ABC中,若∠C=90°,则c2=a2+b2 .加深定理的记忆理解,突出定理的作用.新  课  讲  解勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应用.例1如图14.2.1,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.分析:蚂蚁实际上是在圆柱的半个侧面内爬行.大家用一

4、张白纸卷折圆柱成圆柱形状,标出A、B、C、D各点,然后打开,蚂蚁在圆柱上爬行的距离,与在平面纸上的距离一样.AC之间的最短距离是什么?根据是什么?(学生回答)  通过动手作模型,培养学生的动手、动脑能力,解决“学生空间想像能力有限,想不到蚂蚁爬行的路径”的难题,从而突破难点.第十四章勾股定理备课人:老师根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形ASBCD对角线AC之长.我们可以利用勾股定理计算出AC的长。解如图,在Rt△ABC中,BC=底面周长的一半=10cm, 根据勾股定理得   (提问:勾股定理)∴AC===≈10.77(cm)(

5、勾股定理).答:最短路程约为10.77cm.例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图14.2.3的某工厂,问这辆卡车能否通过该工厂的厂门? 由学生回答“AC之间的最短距离及根据”,有利于帮助学生找准新旧知识的连接点,唤起与形成新知识相关的旧知识,从而使学生的原认知结构对新知识的学习具有某种“召唤力”再次提问,突出勾股定理的作用,加深记忆.第十四章勾股定理备课人:老师图14.2.3分析由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图14.2.3所示,点D在离厂门中线0.8米处,且CD

6、⊥AB,与地面交于H.解:OC=1米 (大门宽度一半),OD=0.8米 (卡车宽度一半)在Rt△OCD中,由勾股定理得CD===0.6米,CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.      利用多媒体设备演示卡车通过厂门正中间时的过程(在几何画板上画出厂门的形状,用移动的矩形表示卡车,矩形的高低可调),让学生通过观察,找到需要计算的线段CH、CD及CD所在的直角三角形OCD,第十四章勾股定理备课人:老师将实际问题转化为应用勾股定理解直角三角形的数学问题.小结  本节课我们学习了应用勾股定理来解决

7、实际问题.在实际当中,长度计算是一个基本问题,而长度计算中应用最多、最基本的就是解直角三角形,利用勾股定理已知两边求第三边,我们要掌握好这一有力工具.课堂练习练习1.如图,从电杆离地面5米处向地面拉一条7米长的钢缆,求地面钢缆固定点A到电杆底部B的距离.(第1题)2.现准备将一块形为直角三角形的绿地扩大,使其仍为直角三角形,两直角边同时扩大到原来的两倍,问斜边扩大到原来的多少倍? (四).作业:同步导学:第40-41页,勾股定理的应用 基础训练(1)第十四章勾股定理备课人:老师本单元分两课时,第二课时讲解例3、例4,例4中同时用到勾股定理及逆定理,重点

8、培养学生的演绎推理能力,具体设计略.(五)、错题的估计和采集:(1)错例从电杆离地面5米处向地

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。