欢迎来到天天文库
浏览记录
ID:29943873
大小:130.50 KB
页数:6页
时间:2018-12-25
《2014届高考数学一轮复习 教师备选作业 第九章 第五节 古典概型 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第九章第五节古典概型一、选择题1.在2011年深圳世界大学生运动会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A. B.C.D.2.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.B.C.D.3.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是( )A.B.C.D.4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相
2、同,则这两位同学参加同一个兴趣小组的概率为( )A. B.C.D.5.在△ABC中,角A、B、C所对的边分别是a、b、c,A=30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a、b,则满足条件的三角形有两个解的概率是( )A.B.C.D.6.一个盒子内部有如图所示的六个小格子,现有桔子、苹果和香蕉各两个,将这六个水果随机地放入这六个格子里,每个格子放一个,放好之后每行、每列的水果种类各不相同的概率是( )A.B.C.D.二、填空题7.某大学有包括甲、乙两人在内的5名大学生,自愿参加2010年上海世博会的服务,这5名大学生中3人被分配
3、到城市足迹馆,另2人被分配到沙特馆.如果这样的分配是随机的,则甲、乙两人被分配到同一馆的概率是________.8.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是________.9.在平行四边形ABCD中,O是AC与BD的交点,P,Q,M,N分别是线段OA,OB,OC,OD的中点.在A,P,M,C中任取一点记为E,在B,Q,N,D中任取一点记为F.设G为满足向量=+的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为__________.三
4、、解答题10.已知集合A={x
5、-36、、A3、A4是道路网中位于一条对角线上的4个交汇处.今在道路网M,N处的甲、乙两人分别要到N,M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N,M处为止.(1)求甲经过A2到达N处的方法有多少种;(2)求甲、乙两人在A2处相遇的概率;(3)求甲、乙两人相遇的概率.详解答案一、选择题1.解析:从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为P=.答案:A2.解析:在正六边形中,6个顶点选取4个,共有15种结果.选取的4点能构成矩形只有7、对边的4个顶点(例如AB与DE),共有3种,故所求概率为=.答案:D3.解析:P=·+·=+==.答案:A4.解析:记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此P(A)==.答案:A5.解析:要使△ABC有两个解,需满足的条件是,因为A=30°,所以,满足此条件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;8、b=5,a=4;b=6,a=4;b=6,a=5,共6种情况,所以满足条件的三角形有两个解的概率是=.答案:A6.解析:依题意,将这六个不同的水果分别放入这六个格子里,每个格子放入一个,共有A=720种不同的放法,其中满足放好之后每行、每列的水果种类各不相同的放法共有96种(此类放法进行分步计数:第一步,确定第一行的两个格子的水果放法,共有C·C·C·A=24种放法;第二步,确定第二行的两个格子的水果放法,有C·C=4种放法,剩余的两个水果放入第三行的两个格子),因此所求的概率等于=.答案:A二、填空题7.解析:依题
6、、A3、A4是道路网中位于一条对角线上的4个交汇处.今在道路网M,N处的甲、乙两人分别要到N,M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N,M处为止.(1)求甲经过A2到达N处的方法有多少种;(2)求甲、乙两人在A2处相遇的概率;(3)求甲、乙两人相遇的概率.详解答案一、选择题1.解析:从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为P=.答案:A2.解析:在正六边形中,6个顶点选取4个,共有15种结果.选取的4点能构成矩形只有
7、对边的4个顶点(例如AB与DE),共有3种,故所求概率为=.答案:D3.解析:P=·+·=+==.答案:A4.解析:记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此P(A)==.答案:A5.解析:要使△ABC有两个解,需满足的条件是,因为A=30°,所以,满足此条件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;
8、b=5,a=4;b=6,a=4;b=6,a=5,共6种情况,所以满足条件的三角形有两个解的概率是=.答案:A6.解析:依题意,将这六个不同的水果分别放入这六个格子里,每个格子放入一个,共有A=720种不同的放法,其中满足放好之后每行、每列的水果种类各不相同的放法共有96种(此类放法进行分步计数:第一步,确定第一行的两个格子的水果放法,共有C·C·C·A=24种放法;第二步,确定第二行的两个格子的水果放法,有C·C=4种放法,剩余的两个水果放入第三行的两个格子),因此所求的概率等于=.答案:A二、填空题7.解析:依题
此文档下载收益归作者所有