欢迎来到天天文库
浏览记录
ID:29891568
大小:490.06 KB
页数:4页
时间:2018-12-24
《高中数学 3.1.1 方程的根与函数的零点全套学案新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1.1方程的根与函数的零点导学案课前预习学案一、预习目标预习方程的根与函数零点的关系。二、预习内容(预习教材P86~P88,找出疑惑之处)复习1:一元二次方程+bx+c=0(a0)的解法.判别式=.当0,方程有两根,为;当0,方程有一根,为;当0,方程无实数.复习2:方程+bx+c=0(a0)的根与二次函数y=ax+bx+c(a0)的图象之间有什么关系?判别式一元二次方程二次函数图象三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.结合二次函数的图象,
2、判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.掌握零点存在的判定条件.学习重难点:方程的根与函数的零点的关系,求函数零点的个数问题二、学习过程探究任务一:函数零点与方程的根的关系问题:①方程的解为,函数的图象与x轴有个交点,坐标为.②方程的解为,函数的图象与x轴有个交点,坐标为.③方程的解为,函数的图象与x轴有个交点,坐标为.根据以上结论,可以得到:一元二次方程的根就是相应二次函数的图象与x轴交点的.你能将结论进一步推广到吗?新知:对于函数,我们把使的实数x叫做函数的零点(zeropoint)
3、.反思:函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?试试:(1)函数的零点为;(2)函数的零点为.小结:方程有实数根函数的图象与x轴有交点函数有零点.探究任务二:零点存在性定理问题:①作出的图象,求的值,观察和的符号②观察下面函数的图象,在区间上零点;0;在区间上零点;0;在区间上零点;0.新知:如果函数在区间上的图象是连续不断的一条曲线,并且有<0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.讨论:零点个数一定是一个吗?逆定理成立吗?试结合图形来分析.三、典型例题例1求函数的
4、零点的个数.变式一:求函数的零点所在区间.小结:函数零点的求法.①代数法:求方程的实数根;②几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.例2求函数的零点大致所在区间.变式训练二求下列函数的零点:(1);(2).四、反思总结图像连续的函数的零点的性质:(1)函数的图像是连续的,当它通过零点时(非偶次零点),函数值变号.推论:函数在区间上的图像是连续的,且,那么函数在区间上至少有一个零点.(2)相邻两个零点之间的函数值保持同号.五、当堂达标1.求函数的零点所在区间,并画出它的大致图
5、象.课后练习与提高1.函数的零点个数为().A.1B.2C.3D.42.若函数在上连续,且有.则函数在上().A.一定没有零点B.至少有一个零点C.只有一个零点D.零点情况不确定3.函数的零点所在区间为().A.B.C.D.4.函数的零点为.5.若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为.6.已知函数.(1)为何值时,函数的图象与轴有两个零点;(2)若函数至少有一个零点在原点右侧,求值.
此文档下载收益归作者所有