高中数学 3.4基本不等式 (3)教案 新人教a版必修5

高中数学 3.4基本不等式 (3)教案 新人教a版必修5

ID:29877201

大小:187.06 KB

页数:3页

时间:2018-12-24

高中数学 3.4基本不等式 (3)教案 新人教a版必修5_第1页
高中数学 3.4基本不等式 (3)教案 新人教a版必修5_第2页
高中数学 3.4基本不等式 (3)教案 新人教a版必修5_第3页
资源描述:

《高中数学 3.4基本不等式 (3)教案 新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:§3.4基本不等式第3课时授课类型:习题课【教学目标】1.知识与技能:进一步掌握基本不等式;会用此不等式证明不等式,会应用此不等式求某些函数的最值,能够解决一些简单的实际问题;2.过程与方法:通过例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值。3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。【教学重点】掌握基本不等式,会用此不等式证明不等式,会用此不等式求某些函数的最值【教学难点】利用此不等式求函数的最大、最小值。【教学过程】1.课题导入

2、1.基本不等式:如果a,b是正数,那么2.用基本不等式求最大(小)值的步骤。2.讲授新课1)利用基本不等式证明不等式例1已知m>0,求证。[思维切入]因为m>0,所以可把和分别看作基本不等式中的a和b,直接利用基本不等式。[证明]因为m>0,,由基本不等式得当且仅当=,即m=2时,取等号。规律技巧总结注意:m>0这一前提条件和=144为定值的前提条件。3.随堂练习1[思维拓展1]已知a,b,c,d都是正数,求证.[思维拓展2]求证.例2求证:.[思维切入]由于不等式左边含有字母a,右边无字母,直接使用基本不等式,无法约掉字母a,而左边

3、.这样变形后,在用基本不等式即可得证.[证明]当且仅当=a-3即a=5时,等号成立.规律技巧总结通过加减项的方法配凑成基本不等式的形式.2)利用不等式求最值例3(1)若x>0,求的最小值;(2)若x<0,求的最大值.[思维切入]本题(1)x>0和=36两个前提条件;(2)中x<0,可以用-x>0来转化.解L1)因为x>0由基本不等式得,当且仅当即x=时,取最小值12.(2)因为x<0,所以-x>0,由基本不等式得:,所以.当且仅当即x=-时,取得最大-12.规律技巧总结利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正.随

4、堂练习2[思维拓展1]求(x>5)的最小值.[思维拓展2]若x>0,y>0,且,求xy的最小值.4.课时小结用基本不等式证明不等式和求函数的最大、最小值。5.评价设计1.证明:2.若,则为何值时有最小值,最小值为几?【板书设计】

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。