欢迎来到天天文库
浏览记录
ID:29368257
大小:154.50 KB
页数:3页
时间:2018-12-19
《高中数学 3.4《基本不等式2》教案 新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、基本不等式第二课时(1)教学目标(a)知识与技能:能够运用基本不等式解决生活中的应用问题(b)过程与方法:本节课是基本不等式应用举例的延伸。整堂课要围绕如何引导学生分析题意、设未知量、找出数量关系进行求解这个中心。3道例题的安排从易到难、从简单到复杂,适应学生的认知水平。教师要根据课堂情况及时提出针对性问题,同时通过学生的解题过程进一步发现学生的思维漏洞,纠正数学表达中的错误(c)情感与价值:进一步培养学生学习数学、应用数学的意识以及思维的创新性和深刻性(2)教学重点、教学难点教学重点:正确运用基本不等式教学难点:注意运用不等式求最大(小)值的条件(
2、3)学法与教学用具列出函数关系式是解应用题的关键,也是本节要体现的技能之一。对例题的处理可让学生思考,然后师生共同对解题思路进行概括总结,使学生更深刻地领会和掌握解应用题的方法和步骤。直尺和投影仪(4)教学设想1、设置情境提问:前一节课我们已经学习了基本不等式,我们常把叫做正数的算术平均数,把叫做正数的几何平均数。今天我们就生活中的实际例子研究它的重用作用。2、新课讲授例1、(1)用篱笆围一个面积为100的矩形菜园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?(2)一段长为36的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,
3、菜园的面积最大。最大面积是多少?分析:(1)当长和宽的乘积确定时,问周长最短就是求长和宽和的最小值(2)当长和宽的和确定时,求长与宽取何值时两者乘积最大解:(1)设矩形菜园的长为m,宽为m,则篱笆的长为2()m由,可得2()等号当且仅当,因此,这个矩形的长、宽为10m时,所用篱笆最短,最短篱笆为40m(2)设矩形菜园的长为m,宽为m,则2()=36,=18,矩形菜园的面积为,由可得,可得等号当且仅当因此,这个矩形的长、宽都为9m时,菜园的面积最大,最大面积为81例2、某工厂要建造一个长方形无盖贮水池,其容积为4800深为3m。如果池底每平方米的造价为
4、150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低造价为多少元?分析:若底面的长和宽确定了,水池的造价也就确定了,因此可转化为考察底面的长和宽各为多少时,水池的总造价最低。解:设底面的长为m,宽为m,水池总造价为元,根据题意,有由容积为4800可得因此由基本不等式与不等式性质,可得即可得等号当且仅当所以,将水池的地面设计成边长为40m的正方形时总造价最低,最低造价为297600元1、课堂练习课本第113页练习第2、3、4题4、归纳总结利用基本不等式来解题时,要学会审题及根据题意列出函数表达式,要懂得利用基本不等式来求最大(小)值
5、(5)评价设计1、课本第113页习题3.4第2、3、4题w.w.w.k.s.5.u.c.o.mwww.ks5u.com
此文档下载收益归作者所有