欢迎来到天天文库
浏览记录
ID:29871294
大小:221.50 KB
页数:15页
时间:2018-12-24
《高二数学不等式的证明》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、高二数学不等式的证明(二) [本周学习内容]不等式证明中的综合证明方法: 1.换元法:通过适当的换元,使问题简单化,常用的有三角换元和代数换元。 2.放缩法:理论依据:a>b,b>ca.c,找到不等号的两边的中间量,从而使不等式成立。 3.反证法:理论依据:命题“p”与命题“非p”一真、一假, 证明格式 [反证]:假设结论“p”错误,“非p”正确,开始倒推,推导出矛盾(与定义,定理、已知等等矛盾),从而得到假设不正确,原命题正确。 4.数学归纳法:这是一种利用递推关系证明与非零自然数有关的命题,可以是等式、不等式、命题。 证明格式:
2、 (1)当n=n0时,命题成立; (2)假设当n=k时命题成立; 则当n=k+1时,证明出命题也成立。 由(1)(2)知:原命题都成立。 [本周教学例题] 一、换元法: 1.三角换元: 例1.求证: 证一:(综合法) 即: 证二:(换元法)∵-1≤x≤1∴令x=cos,[0,π] 则 ∵-1≤sin2≤1 例2.已知x>0,y>0,2x+y=1,求证: 分析:由于条件给出了x>0,y>0,2x+y=1,故如何使用2x+y=1这一特点是解决问题的重要环节。由本题中x>0,y>0,2x+y=1的条件也可用三角代换。
3、证一: 证二:由x>0,y>0,2x+y=1,可设 则 例3.若x2+y2≤1,求证: 证:设 则 例4.若x>1,y>1,求证: 证:设 则 例5.已知:a>1,b>0,a-b=1,求证: 证:∵a>1,b>0,a-b=1,∴不妨设 则 小结:若0≤x≤1,则可令 若x2+y2=1,则可令x=cos,y=sin(0≤θ<2π) 若x2-y2=1,则可令x=sec,y=tan(0≤θ<2π) 若x≥1,则可令,若xR,则可令 2.代数换元: 例6:证明:若a>0,则 证:设 则 即
4、∴原式成立 小结:还有诸如“均值换元”“设差换元”的方法。 二、放缩法: 例7.若a,b,c,dR+,求证: 证:记 ∵a,b,c,dR+ ∴12时,求证:logn(n-1)logn(n+1)<1 证:∵n>2∴logn(n-1)>0,logn(n+1)>0 ∴n>2时,logn(n-1)logn(n+1)<1 例9.求证: 证: 三.反证法 例10.设05、,b,c<1 同理: 以上三式相乘:与①矛盾 ∴原式成立 例11.已知a+b+c+>0,ab+bc+ca>0,abc>0,求证:a,b,c>0 证:设a<0,∵abc>0,∴bc<0 又由a+b+c>0,则b+c=-a>0 ∴ab+bc+ca=a(b+c)+bc<0与题设矛盾 又:若a=0,则与abc>0矛盾,∴必有a>0 同理可证:b>0,c>0 四.构造法: 1.构造函数法 例12.已知x>0,求证: 证:构造函数 由 显然 ∴上式>0 ∴f(x)在上单调递增,∴左边 例13.求证: 证:设 用定义法可证6、:f(t)在上单调递增, 令:3≤t10 则有两个实根。 例15.求证: 证:设 当y=1时,命题显然成立, 当y≠1时,△=(y+1)2-4(y-1)2=(3y-1)(y-3)≥0 综上所述,原式成立。(此法也称判别式法) 例16.已知x2=a2+b2,y2=c2+d2,且所有字母均为正,求证:xy≥ac+bd 证一:(分析法)∵a,7、b,c,d,x,y都是正数 ∴要证:(xy)≥ac+bd 只需证 即:(a2+b2)(c2+d2)≥a2c2+b2d2+2abcd 展开得:a2c2+b2d2+a2d2+b2c2≥a2c2+b2d2+2abcd 即:a2d2+b2c2≥2abcd 由基本不等式,显然成立 ∴xy≥ac+bd 证二:(综合法) 证三:(三角代换法) ∵x2=a2+b2,∴不妨设 y2=c2+d2 五.数学归纳法: 例17.求证:设nN,n≥2,求证: 分析:关于自然数的不等式常可用数学归纳法进行证明。 证:当n=2时,左边,易得:8、左边>右边。 当n=k时,命题成立,即:成立。 当n=k+1时,左边 又;且4(k+1)2>(2k+3)(2k+1)
5、,b,c<1 同理: 以上三式相乘:与①矛盾 ∴原式成立 例11.已知a+b+c+>0,ab+bc+ca>0,abc>0,求证:a,b,c>0 证:设a<0,∵abc>0,∴bc<0 又由a+b+c>0,则b+c=-a>0 ∴ab+bc+ca=a(b+c)+bc<0与题设矛盾 又:若a=0,则与abc>0矛盾,∴必有a>0 同理可证:b>0,c>0 四.构造法: 1.构造函数法 例12.已知x>0,求证: 证:构造函数 由 显然 ∴上式>0 ∴f(x)在上单调递增,∴左边 例13.求证: 证:设 用定义法可证
6、:f(t)在上单调递增, 令:3≤t10 则有两个实根。 例15.求证: 证:设 当y=1时,命题显然成立, 当y≠1时,△=(y+1)2-4(y-1)2=(3y-1)(y-3)≥0 综上所述,原式成立。(此法也称判别式法) 例16.已知x2=a2+b2,y2=c2+d2,且所有字母均为正,求证:xy≥ac+bd 证一:(分析法)∵a,
7、b,c,d,x,y都是正数 ∴要证:(xy)≥ac+bd 只需证 即:(a2+b2)(c2+d2)≥a2c2+b2d2+2abcd 展开得:a2c2+b2d2+a2d2+b2c2≥a2c2+b2d2+2abcd 即:a2d2+b2c2≥2abcd 由基本不等式,显然成立 ∴xy≥ac+bd 证二:(综合法) 证三:(三角代换法) ∵x2=a2+b2,∴不妨设 y2=c2+d2 五.数学归纳法: 例17.求证:设nN,n≥2,求证: 分析:关于自然数的不等式常可用数学归纳法进行证明。 证:当n=2时,左边,易得:
8、左边>右边。 当n=k时,命题成立,即:成立。 当n=k+1时,左边 又;且4(k+1)2>(2k+3)(2k+1)
此文档下载收益归作者所有