欢迎来到天天文库
浏览记录
ID:29867622
大小:986.50 KB
页数:28页
时间:2018-12-24
《高考数学预测(14)空间向量与立体几何》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2009届新课标数学考点预测(14)空间向量与立体几何一、考点介绍1.利用向量处理平行问题 空间图形的平行关系包括直线与直线的平行,直线与平面的平行,平面与平面的平行,它们都可以用向量方法来研究。方法如下:(1)设是两条不重合的直线,它们的方向向量分别为,那么。根据实数与向量积的定义:。(2)平面与平面平行可以转化两个平面的法向量平行:设两个不重合的平面的法向量分别为,那么。(3)直线与平面平行可以转化为直线的方向向量与平面与平面的法向量垂直:设直线在平面外,是的一个方向向量,是平面的一个法向量,那么。(4)平面表示以为方向向量的直线与向量
2、平行或在平面内,因此也可以由共面向量定理证明线面平行问题。2.利用向量处理垂直问题 空间的线线、线面、面面垂直关系,都可以转化为空间内的两个向量垂直问题来解决。(1)设分别为直线的一个方向向量,那么;(2)设分别为平面的一个法向量,那么;(3)设直线的方向向量为,平面的法向量为,那么。3.利用向量处理角度问题在立体几何中,涉及的角有异面直线所成的角、直线与平面所成的角、二面角等。关于角的计算,均可归结为两个向量的夹角。对于空间向量,有,利用这一结论,我们可以较方便地处理立体几何中的角的问题。 求异面直线所成的角的关键在于求异面直线上两向量的
3、数量积,而要求两向量的数量积,可以求两向量的坐标,也可以把所求向量用一组基向量表示,两向量的夹角范围是,而两异面直线所成角的范围是,应注意加以区分。 直线与平面的夹角,是直线的方向向量与平面的法向量的夹角(锐角)的余角,故有:,。设分别是二面角的面的法向量,则<>就是所求二面角的平面角或其补角的大小。4.利用向量处理距离问题 立体几何中涉及到距离的问题比较多,如两点的距离、点与线的距离、点与面的距离、线与面的距离、两异面直线的距离问题等等,它是数学学习中的一个难点。此部分若用向量来处理,则思路较为简单,方法较为因定。(1)利用可以求有关
4、距离问题;(2)设是直线上的一个单位方向向量,线段AB在上的投影是,则有||=,由此可求点到线,点到面的距离。二、高考真题1.2008山东卷(20)(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.因为E为BC的中点,所以AE⊥BC.又BC∥AD,因此AE⊥AD.因为PA⊥平面A
5、BCD,AE平面ABCD,所以PA⊥AE.而PA平面PAD,AD平面PAD且PA∩AD=A,所以AE⊥平面PAD,又PD平面PAD.所以AE⊥PD.(Ⅱ)解:设AB=2,H为PD上任意一点,连接AH,EH.由(Ⅰ)知AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角.在Rt△EAH中,AE=,所以当AH最短时,∠EHA最大,即当AH⊥PD时,∠EHA最大.此时tan∠EHA=因此AH=.又AD=2,所以∠ADH=45°,所以PA=2.解法一:因为PA⊥平面ABCD,PA平面PAC,所以平面PAC⊥平面ABCD.过E作EO⊥AC于O,则EO
6、⊥平面PAC,过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,在Rt△AOE中,EO=AE·sin30°=,AO=AE·cos30°=,又F是PC的中点,在Rt△ASO中,SO=AO·sin45°=,又在Rt△ESO中,cos∠ESO=即所求二面角的余弦值为解法二:由(Ⅰ)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E、F分别为BC、PC的中点,所以E、F分别为BC、PC的中点,所以A(0,0,0),B(,-1,0),C(C,1,0),D(0,2,0),P(0,0,2),E(,0,0),
7、F(),所以设平面AEF的一法向量为则因此取因为BD⊥AC,BD⊥PA,PA∩AC=A,所以BD⊥平面AFC,故为平面AFC的一法向量.又=(-),所以cos<m,>=因为二面角E-AF-C为锐角,所以所求二面角的余弦值为2.2008江苏卷16.在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点,求证:(Ⅰ)直线EF∥面ACD;(Ⅱ)面EFC⊥面BCD.【解析】本小题考查空间直线与平面、平面与平面的位置关系的判定.(Ⅰ)∵E,F分别是AB,BD的中点,∴EF是△ABD的中位线,∴EF∥AD,∵EF面ACD,AD面ACD
8、,∴直线EF∥面ACD.(Ⅱ)∵AD⊥BD,EF∥AD,∴EF⊥BD.∵CB=CD,F是BD的中点,∴CF⊥BD.又EFCF=F,∴BD⊥面EFC.∵BD面BCD,
此文档下载收益归作者所有