八年级数学上册 2.1.2 认识无理数教案 (新版)北师大版

八年级数学上册 2.1.2 认识无理数教案 (新版)北师大版

ID:29849687

大小:190.56 KB

页数:6页

时间:2018-12-24

八年级数学上册 2.1.2 认识无理数教案 (新版)北师大版_第1页
八年级数学上册 2.1.2 认识无理数教案 (新版)北师大版_第2页
八年级数学上册 2.1.2 认识无理数教案 (新版)北师大版_第3页
八年级数学上册 2.1.2 认识无理数教案 (新版)北师大版_第4页
八年级数学上册 2.1.2 认识无理数教案 (新版)北师大版_第5页
资源描述:

《八年级数学上册 2.1.2 认识无理数教案 (新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.2认识无理数1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.探索无理数与有理数的区别,并能辨别出一个数是无理数还是有理数.2.通过学生活动准确认识到有理数都可以划成有限小数和无限循环小数,发展学生的抽象概括能力.3.让学生理解估算的意义,掌握估算的方法,同时发展学生的估算能力,在数学活动发挥学生的积极作调学生参与数学问题的积极性,培养学生的合作精神.教学重点与难点:重点:无理数概念的建立过程;了解无理数与有理数的区别,并能正确判断.难点:无理数概念的建立及估算;会判断一个

2、数是无理数还是有理数,有理数与无理数的区别.教法与学法指导:本节课是在上一节课对无理数定性分析的基础上,借助于计算器,采用估算等方法,对无理数的产生进行定性的研究.在教学中要强调让学生探究概念形成的过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调小组之间的合作与交流,强化应用意识,培养学生多方面的能力.学生要借助工具多动手、动口、动脑,自主探究,提高学习的兴趣,进一步体会数学的地位和作用.课前准备:多媒体课件、计算器.教学过程:一、创设情境,导入新课教师:同学们还记得有理数是如何分类的吗

3、?整数(如-1,0,2,3,…):都可看成有限小数.分数(如-,,,…):可不可能都化成有限小数或无限小数?学生:有理数教师:很好!上节课我们了解到一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来探究这些数的真面目.设计意图:通过这些问题让学生发现有理数不够用了,这些数既不是整数,也不是分数,激发学生的求知欲,去揭示它的真面目.实际效果:激发学生的好奇心和求知欲,吸引学生注意力,引出本节课题“数怎么又不够用了”.二、合作探究,发现新知探究一:计算器

4、探索面积为2的正方形的边长a.(课件展示)教师:大家还记的我们上节课是怎样得到面积为2的正方形的吗?学生:把两个边长为1的小正方形,通过剪切、拼图拼成一个大的正方形,它的面积就是2.教师:面积为2的正方形的边长a究竟是多少呢?你能不能估计大正方形的边长a在什么范围内?学生:(观察课件后回答)通过图形可以看出1<a<2.因为12=1,22=4,而a的平方等于2,所以1<a<2.教师:非常好!既然1<a<2,那么a是1点几呢?为什么?学生:(探究后回答)1.4<a<1.5.因为1.42=1.96,1.5

5、2=2.25,而a的平方等于2,所以1.4<a<1.5.教师:你能精确到它的百分位吗?千分位呢?万分位呢?下面给大家几分钟的时间,借助计算器进行探索.(学生小组合作,探索交流)教师:谁能说一下小组探索的结果?学生:a=1.4142.教师:恰好是1.4142吗?学生:约等于1.4142,在1.4142与1.4143之间.教师:还有几位小数?学生:无数位.它是一个无限小数.教师:对,大家可以看一下小明同学的探索过程.(展示课件)边长a面积S1<a<21<S<41.4<a<1.51.96<S<2.251.

6、41<a<1.421.9881<S<2.01641.414<a<1.4151.999396<S<2.0022251.4142<a<1.41431.99996164<S<2.00024449    教师:如果继续探索下去,你会有什么发现?学生:这个数是无限小数而且不循环.教师:对,事实上,它是一个无限不循环小数.探究二:计算器探索面积为5的正方形的边长b(课件展示)教师:模仿上一个探索过程,你能探索面积为5的正方形的边长b吗?如果能,把探究的结果填入下表.边长b面积S保留整数<b<<S<保留十分位<b

7、<<S<保留百分位<b<<S<保留千分位<b<<S<保留万分位<b<<S<学生:(小组合作,交流探索)把探究结果填入表格.教师:谁能说一下你能得到什么结论?学生:b=2.23606…,它也是一个无限不循环小数.教师:同学们探索的非常好.模仿刚才的探索方法,我们也可以探索体积为2的正方体的棱长.借助计算器,可以得到它的棱长为1.25992105…,它也是一个无限不循环小数.设计意图:借助计算器探索出a=1.41421356…,b=2.2360679…,是一个无限不循环小数,并从中感受无限逼近的数学思想

8、.实际效果:通过探究让学生真切感受到无理数确实是无限不循环的,为无理数概念打下基础.议一议(课件展示):把下列有理数表示成小数,你发现了什么?3,,,,.学生1:3=3.0,=0.8,=,,.学生2:我发现3,是有限小数,是无限循环小数.教师:好!上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像1.41421356…,2.2360679…等这些数的小数位数都是无限的,但是又不是循环的,是无限不循环小数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。