欢迎来到天天文库
浏览记录
ID:29821236
大小:175.06 KB
页数:6页
时间:2018-12-24
《高中数学 函数的单调性教案 新人教a版必修1 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、安徽省淮南市第二十中学高中数学函数的单调性教案新人教A版必修1教材分析函数的单调性是函数的重要特性之一,它把自变量的变化方向和函数值的变化方向定性地联系在一起.在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图
2、像得出猜想结论,进而用推理证明猜想的体系.这节内容的重点是理解函数单调性的概念以及利用函数的单调性的概念证明函数的单调性,难点是理解函数单调性的概念.教学目标1.通过对增函数、减函数概念的归纳、抽象和概括,体验数学概念的产生和形成过程,培养学生从特殊到一般的抽象概括能力.2.掌握增函数、减函数等函数单调性的概念,理解函数增减性的几何意义,并能初步运用所学知识判断或证明一些简单函数的单调性,培养学生对数学的理解能力和逻辑推理能力.3.通过对函数单调性的学习,初步体会知识发生、发展、运用的过程,培养学生形成科学的思维.任
3、务分析教学设计一、问题情境1.如图为某市一天内的气温变化图:(1)观察这个气温变化图,说出气温在这一天内的变化情况.(2)怎样用数学语言刻画在这一天内“随着时间的增大,气温逐渐升高或下降”这一特征?2.分别作出下列函数的图像:(1)y=2x. (2)y=-x+2. (3)y=x2.根据三个函数图像,分别指出当x∈(-∞,+∞)时,图像的变化趋势?二、建立模型1.首先引导学生对问题2进行探讨———观察分析观察函数y=2x,y=-x+2,y=x2图像,可以发现:y=2x在(-∞,+∞)上、y=x2在(0,+∞)上
4、的图像由左向右都是上升的;y=-x+2在(-∞,+∞)上、y=x2在(-∞,0)上的图像由左向右都是下降的.函数图像的“上升”或“下降”反映了函数的一个基本性质———单调性.那么,如何描述函数图像“上升”或“下降”这个图像特征呢?以函数y=x2,x∈(-∞,0)为例,图像由左向右下降,意味着“随着x的增大,相应的函数值y=f(x)反而减小”,如何量化呢?取自变量的两个不同的值,如x1=-5,x2=-3,这时有x1<x2,f(x1)>f(x2),但是这种量化并不精确.因此,x1,x2应具有“任意性”.所以,在区间(-∞
5、,0)上,任取两个x1,x2得到f(x1)=,f(x2)=.当x1<x2时,都有f(x1)>f(x2).这时,我们就说f(x)=x2在区间(-∞,0)上是减函数.注意:在这里,要提示学生如何由直观图像的变化规律,转化为数学语言,即自变量x变化时对函数值y的影响.必要时,对x,y可举出具体数值,进行引导、归纳和总结.这里的“都有”是对应于“任意”的.2.在学生讨论归纳函数单调性定义的基础上,教师明晰———抽象概括设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都
6、有f(x1)<f(x2),那么我们就说函数f(x)在区间D上是增函数[如图8-2(1)].如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么我们就说函数f(x)在区间D上是减函数[如图8-2(2)].如果函数y=f(x)在区间D上是增函数或减函数,那么我们就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫作y=f(x)的单调区间.3.提出问题,组织学生讨论(1)定义在R上的函数f(x),满足f(2)>f(1),能否判断函数f(x)在R是增函数?(2
7、)定义在R上函数f(x)在区间(-∞,0]上是增函数,在区间(0,+∞)上也是增函数,判断函数f(s)在R上是否为增函数.(3)观察问题情境1中气温变化图像,根据图像说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数.强调:定义中x1,x2是区间D上的任意两个自变量;函数的单调性是相对于某一区间而言的.三、解释应用[例 题]1.证明函数f(x)=2x+1,在(-∞,+∞)是增函数.注:要规范解题格式.2.证明函数f(x)=,在区间(-∞,0)和(0,+∞)上都是减函数.思考:能否说,函数f(x)=在定义域
8、(-∞,0)∪(0,+∞)上是减函数?3.设函数y=f(x)在区间D上保号(恒正或恒负),且f(x)在区间D上为增函数,求证:f(x)=在区间D上为减函数.证明:设x1,x2∈D,且x1<x2,∵f(x)在区间D上保号,∴f(x1)f(x2)>0.又f(x)在区间D上为增函数,∴f(x1)-f(x2)<0,从而g(x1)-g(x2)>0,∴g(
此文档下载收益归作者所有