《微积分学习总结》word版

《微积分学习总结》word版

ID:29815795

大小:1.35 MB

页数:64页

时间:2018-12-23

《微积分学习总结》word版_第1页
《微积分学习总结》word版_第2页
《微积分学习总结》word版_第3页
《微积分学习总结》word版_第4页
《微积分学习总结》word版_第5页
资源描述:

《《微积分学习总结》word版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、首先,就是要有正确的复习方法。在这里,我们也给大家提供几种有效的方法以供参考:  第一、大家首先要克服浮躁的毛病,养成看课本的习惯。其实,所有的考试都是从课本知识中发散来的,所以在复习时就必须看课本,反复的看,细节很重要,特别是基本概念和定理。详细浏览完课本之后,认真复习课本上的课后习题和学习指导上每章的复习小结,力争复习参考题每题都过关。复习小结了然于心,然后再复习。  第二、制定复习计划,把时间合理分配到四个章节,尤其是第二章极限尤为重点,是整个上学期微积分理论的基础。学好极限,对于理解连续还有导数有着重要意义,很多同学觉得越学越吃力的原因还是在于学期初没有扎实的打好知识基础。第三、理

2、清知识结构网络图(极限、连续、导数、不定积分),然后根据知识结构网络图去发散、联想基础概念和基本定理和每个知识点的应用计算题,对本章节的内容有个清晰的思路,这样就可以在整体上把握书本知识。从整体上把握书本知识有利于我们对于试卷中的一些基本的题目有一个宏观的把握,对于试卷中的问答题,可以从多角度去理解和把握,这样就能够做到回答问题的严密性。第四、将课上老师所讲授的典型例题及做习题过程遇到的难题还有易错的题归纳整理,分析。数学当中很容易出现同一个问题有几种不同的解决方法的情况,但是经过总结归纳之后在应试时可以选取一个最简单而且效率最高的解法。比如,求极限的13种方法要分别练习,还有求导、求微分

3、及求不定积分公式表要经常回顾。第五、有条件的话可以看看往年的考试真题,针对出现较频率较高的题型,适当的做些有针对性的模拟试题。另外,应该多做那些自己认为知识点理解、应用薄弱的题,对一些难题可在自己思考的基础上加强与同学、老师的交流,对于那些偏题、怪题笑而弃之。其次,有了好的复习方法,还要注意复习内容,也就是复习要点。微积分上学期的主要内容及基本要求经过详细整理分类主要包括以下三个部分,希望能够对大家的复习起到事半功倍的效果:函数、极限与连续(一)基本概念·64·1.函数:常量与变量,函数的定义2.函数的表示方法:解析法,图示法、表格法3.函数的性质:函数的单调性、奇偶性、有界性和周期性4.

4、初等函数:基本初等函数,复合函数,初等函数,分段表示的函数,建立函数关系5.极限:数列极限、函数极限、左右极限、极限四则运算,无穷小量与无穷大量,无穷小量的性质,无穷小量的比较,两个重要极限6.连续:函数在一点连续,左右连续,连续函数,间断点及其分类,初等函数的连续性,闭区间上连续函数性质的叙述重点:函数概念,基本初等函数,极限的计算难点:建立函数关系,极限概念   (二)基本要求1.理解函数的概念,了解分段函数。能熟练地求函数的定义域和函数值。2.了解函数的主要性质(单调性、奇偶性、周期性和有界性)。3.熟练掌握六类基本初等函数的解析表达式、定义域、主要性质和图形。4.了解复合函数、初等

5、函数的概念。5.会列简单应用问题的函数关系式。6.了解极限的概念,知道数极限的描述性定义,会求函数的左、右极限。7.了解无穷小量的概念,了解无穷小量的运算性质及其与无穷大量的关系,以及无穷小量的比较等关系。·64·8.掌握极限的四则运算法则.9.掌握用两个重要极限求一些极限的方法。10.了解函数连续性的定义,会求函数的连续区间。11.了解函数间断点的概念,会判别函数间断点的类型。12.记住初等函数在其有定义的区间内连续的性质,知道闭区间上的连续函数的几个性质。一元函数微分学(一)基本概念1.导数:导数的定义及几何意义,函数连续与可导的关系,基本初等函数的导数,导数的四则运算法则,复合函数求

6、导法则,隐函数求导法则,对数求导法举例,用参数表示的函数的求导法则,高阶导数2.微分:微分的概念与运算,微分基本公式表,微分法则,一阶微分形式的不变性3.中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理的叙述4.导数应用:用洛比达法则去求七种未定式极限问题,函数的单调性判别法,函数的极值及其求法,函数图形的凹凸性及其判别法,拐点及其求法,水平与垂直渐近线,最大值、最小值问题,导数在经济问题的应用重点:导数概念和导数的计算,极值,最大利润问题难点:导数的应用(二)基本要求·64·1.理解导数与微分概念,了解导数的几何意义。会求曲线的切线和法线方程。知道可导与连续的关系。2.熟记导数与微分的

7、基本公式,熟练掌握导数与微分的四则运算法则。3.熟练掌握复合函数的求导法则。4.掌握隐函数的微分法,取对数求导数的方法,以及用参数表示的函数求一阶导数的方法。5.知道一阶微分形式的不变性。6.了解高阶导数概念,掌握求显函数的二阶导数的方法。7.了解罗尔定理、拉格朗日中值定理的条件和结论;知道柯西定理的条件和结论。会用拉格朗日定理证明简单的不等式8.掌握洛比达法则求极限问题9.了解驻点、极值点、极值、凹凸、拐点等概念10.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。