欢迎来到天天文库
浏览记录
ID:29721766
大小:109.01 KB
页数:5页
时间:2018-12-22
《导数、微分及其应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第二讲导数、微分及其应用一、理论要求1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法A.导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导1.决定,求2.决定,求解:两边微分得x=0时,将x=0代入等式得y=13.决定,则B.曲线切法线问题5.f(x
2、)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。解:需求,等式取x->0的极限有:f(1)=0C.导数应用问题6.已知,,求点的性质。解:令,故为极小值点。7.,求单调区间与极值、凹凸区间与拐点、渐进线。解:定义域8.求函数的单调性与极值、渐进线。解:,D.幂级数展开问题10.求解:=E.不等式的证明11.设,证:1)令2)令F.中值定理问题12.设函数具有三阶连续导数,且,,求证:在(-1,1)上存在一点证:其中将x=1,
3、x=-1代入有两式相减:13.,求证:证:令令(关键:构造函数)三、补充习题(作业)1.2.曲线3.4.证明x>0时,证:令
此文档下载收益归作者所有