高中数学 第三章 不等式 3.1 不等关系与不等式(2)教案 新人教a版必修5

高中数学 第三章 不等式 3.1 不等关系与不等式(2)教案 新人教a版必修5

ID:29657968

大小:135.06 KB

页数:8页

时间:2018-12-21

高中数学 第三章 不等式 3.1 不等关系与不等式(2)教案 新人教a版必修5_第1页
高中数学 第三章 不等式 3.1 不等关系与不等式(2)教案 新人教a版必修5_第2页
高中数学 第三章 不等式 3.1 不等关系与不等式(2)教案 新人教a版必修5_第3页
高中数学 第三章 不等式 3.1 不等关系与不等式(2)教案 新人教a版必修5_第4页
高中数学 第三章 不等式 3.1 不等关系与不等式(2)教案 新人教a版必修5_第5页
资源描述:

《高中数学 第三章 不等式 3.1 不等关系与不等式(2)教案 新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1.2 不等关系与不等式(一)项目内容课题3.1.2 不等关系与不等式(一)(共1课时)修改与创新教学目标一、知识与技能1.利用数轴,数形结合回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小与用实数的基本理论来证明不等式的一些性质;2.通过回忆与复习学生所熟悉的等式性质类比得出不等的一些基本性质;3.在了解不等式一些基本性质的基础之上能利用它们来证明一些简单的不等式.二、过程与方法1.采用探究法,按照联想、类比、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设

2、计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣.三、情感态度与价值观1.通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;2.学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严

3、谨美,从而激发学生的学习兴趣.教学重、难点教学重点1.利用数轴,数形结合回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小;2.了解不等式性质研究的必要性及不等式的一些基本性质;3.能用不等式的基本性质来证明一些简单的不等式.教学难点1.用实数的基本理论来比较两个代数式的大小时对差的合理变形;2.利用不等式的基本性质来证明一些简单的不等式.教学准备投影仪、胶片、三角板、刻度尺教学过程导入新课师上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系.为了利用不等式更好地研究不等量关系

4、及用不等式或不等式组研究含有不等关系的问题.我们需要对不等式的性质有必要的了解.推进新课师我们已学习过等式、不等式,同学们还记得等式的性质吗?生等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的仍是等式.师很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,结果将会如何呢?(此时很快能让学生进入对初中所学过的不等式三条基本性质的回忆与复习)师一般地说,不等式的基本性质有三条:性质1:不等式的两边都加上(或都减

5、去)同一个数,不等号的方向_________.(让同学回答)性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向________.(让同学回答)性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向________.(让同学回答)[过程引导]师不等式的这三条基本性质,都可以用数学的符号语言表达出来.(让三位同学板演)性质1:a<ba+c<b+c(或a-c<b-c);a>ba+c>b+c(或a-c>b-c).性质2:a<b且c>0ac<bc(或);a>b且c>0ac>bc(或).性质3:a<b且c<0ac>bc(或);a>b且c<0ac

6、<bc(或).(用数学符号表达不等式的性质,目的是为下面用符号进行不等式性质与证明打基础,给学生也有一适应过程.老师对学生的板演作点评)师性质2、性质3两条性质中,对a、b、c有什么要求?生对a、b没什么要求,特别要注意c是正数还是负数.师很好,c可以为零吗?生c不能为零.因为c为零时,任何不等式两边都乘以零就变成等式了.若是“≤”或“≥”则可以.师这位同学回答的非常好,思维既严谨又周到.师对于不等式的这三条基本性质,我们不仅要理解这三条性质,还要能灵活运用.在初中,我们对这三条性质只是作了感性的归纳,现在我们应对它给出严格的证明,只有这样应用这些性质才能有

7、理有据.(学生已迫不及待)生(齐声)那我们来给出严格的证明吧.(此处,说明老师点拨很到位.真正体现了课堂上教师的主导地位与学生的主体地位)师为了对不等式的基本性质给出严格证明,我们还有必要回忆实数的基本性质.(此时学生对这一名词肯定感到生疏,老师在黑板上应很快给出数轴)[教师精讲]师若点A对应的实数为a,点B对应的实数为b,因为点A在点B的左边,所以可得a>b.a>b表示a减去b所得的差是一个大于0的数即正数,即a>ba-b>0.它的逆命题是否正确?生显然正确.师类似地,如果a<b,则a减去b是负数,如果a=b

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。