高中数学 第一章 集合与函数概念 1.3.2 函数的奇偶性教案 新人教a版必修1

高中数学 第一章 集合与函数概念 1.3.2 函数的奇偶性教案 新人教a版必修1

ID:29652121

大小:163.06 KB

页数:4页

时间:2018-12-21

高中数学 第一章 集合与函数概念 1.3.2 函数的奇偶性教案 新人教a版必修1_第1页
高中数学 第一章 集合与函数概念 1.3.2 函数的奇偶性教案 新人教a版必修1_第2页
高中数学 第一章 集合与函数概念 1.3.2 函数的奇偶性教案 新人教a版必修1_第3页
高中数学 第一章 集合与函数概念 1.3.2 函数的奇偶性教案 新人教a版必修1_第4页
资源描述:

《高中数学 第一章 集合与函数概念 1.3.2 函数的奇偶性教案 新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、函数的奇偶性教学目标:1.知识与技能:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;2.过程与方法:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.3.情态与价值:通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力.修改与创新教学重点:函数的奇偶性及其几何意义。教学难点:判断函数的奇偶性的方法与格式。教学用具:三角板、投影仪教学方法:学生通过自己动手计算,独立地去经历发现,猜想与证明的全过程,从而建立奇偶函数的概念.教学过程:(一)创设情景,揭示课题“

2、对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性?观察下列函数的图象,总结各函数之间的共性.-110y0-1x0通过讨论归纳:函数是定义域为全体实数的抛物线;函数是定义域为全体实数的折线;函数是定义域为非零实数的两支曲线,各函数之间的共性为图象关于轴对称.观察一对关于轴对称的点的坐标有什么关系?归纳:若点在函数图象上,则相应的点也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.(二)研探新知函数的奇偶性定义:1.偶函数一般地,对于函数的定义域内的任意一个,都有,那么就叫做偶函数.

3、(学生活动)依照偶函数的定义给出奇函数的定义.2.奇函数一般地,对于函数的定义域的任意一个,都有,那么就叫做奇函数.注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个,则也一定是定义域内的一个自变量(即定义域关于原点对称).3.具有奇偶性的函数的图象的特征偶函数的图象关于轴对称;奇函数的图象关于原点对称.(三)质疑答辩,排难解惑,发展思维.例1.判断下列函数是否是偶函数.(1)(2)解:函数不是偶函数,因为它的定义域关于原点不对称.函数也

4、不是偶函数,因为它的定义域为,并不关于原点对称.例2.判断下列函数的奇偶性(1)(2)(3)(4)解:小结:利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定;③作出相应结论:若;若.例3.判断下列函数的奇偶性:①②分析:先验证函数定义域的对称性,再考察.解:(1)>0且>=<<,它具有对称性.因为,所以是偶函数,不是奇函数.(2)当>0时,-<0,于是当<0时,->0,于是综上可知,是奇函数.例4.利用函数的奇偶性补全函数的图象.教材P35思考题:规律:偶函数的图象关于轴对称;奇函数的图象关于原点

5、对称.说明:这也可以作为判断函数奇偶性的依据.例5.已知是奇函数,在(0,+∞)上是增函数.证明:在(-∞,0)上也是增函数.证明:(略)小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.(四)巩固深化,反馈矫正.(1)课本练习1.2(2)判断下列函数的奇偶性,并说明理由.①②③④(五)归纳小结,整体认识.本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合

6、函数的图象充分理解好单调性和奇偶性这两个性质.(六)设置问题,留下悬念.1.书面作业:2.设>0时,试问:当<0时,的表达式是什么?解:当<0时,->0,所以,又因为是奇函数,所以.教学反思:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。