2、变能的一种等效应力其值为(((a1-a2)^2+(a2-a3)^2+(a3-a1)^2)/2)^0.5其中a1,a2,a3分别指第一、二、三主应力,^2表示平方,^0.5表示开方。 von Mises屈服准则是von Mises于1913年提出了一个屈服准则。 它的内容是:当点应力状态的等效应力达到某一与应力状态无关的定值时,材料就屈服; 或者说材料处于塑性状态时,等效应力始终是一不变的定值。 等效σ=(1/2(σ1-σ2)^2+(σ2-σ3)^2+(σ3-σ1)^2)^(1/2) 参看《塑性成型力学》 von mises应力就是一种当量应力,它是根据第四
5、处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。 B.受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件,这种力学条件一般可表示为 f(σij) = C 又称为屈服函数,式中 C 是与材料性质有关而与应力状态无关的常数,可通过试验求得。 屈服准则是求解塑性成形问题必要的补充方程
7、为判断。从基本原理上讲是与有限元软件的程序、计算相关的,其变形是根据能量得到的,模拟出的应力状态是对能量的一种等效处理(过程很复杂),就是这样子。因此精确的材料参数和边界处理是有限元模拟的关键,任何模拟出来的结果都需要细致的分析,都值得怀疑:) Von Mises 应力是基于剪切应变能的一种等效应力其值为(((a1-a2)^2+(a2-a3)^2+(a3-a1)^2)/2)^0.5 其中a1,a2,a3分别指第一、二、三主应力,^2表示平方,^0.5表示开方。 其大概的含义是当单元体的形状改变比能达到一定程度,材料开始屈服。 von Mises于1913年提出了