1、课时达标 第32讲一元二次不等式及其解法[解密考纲]考查一元二次不等式的解法,常利用判别式讨论解集,常以选择题或填空题的形式出现.一、选择题1.不等式<1的解集是( A )A.(-∞,-1)∪(1,+∞)B.(1,+∞)C.(-∞,-1)D.(-1,1)解析 ∵<1,∴-1<0,即<0,该不等式可化为(x+1)(x-1)>0,∴x<-1或x>1.故选A.2.(2018·湖南株洲期中)在R上定义运算⊙:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为( B )A.(0,2) B.(-2,1)C
15、x<-2或x>4},∴a<0,而且函数f(x)=ax2+bx+c的图象的对称轴方程为x==1,∴f(-1)=f(3).又∵函数f(x)在[1,+∞)上是减函数,∴f(5)<f(3)<f(2),即f(5)<f(-1)<f(2).故选B.6.若不等式(a-a2)(x2+1)+x≤0对一切x∈(0,2]恒成立,则a的取值范围是( C )A.B.C.∪D.解析 ∵x∈(0,2],∴a2-a≥=.要使a2-a≥在x∈(0,2]时恒成立,则a2-a≥max,由基本不等式得x+≥2,当