高三数学考前赢分30天 第22天

高三数学考前赢分30天 第22天

ID:29635233

大小:600.56 KB

页数:7页

时间:2018-12-21

高三数学考前赢分30天 第22天_第1页
高三数学考前赢分30天 第22天_第2页
高三数学考前赢分30天 第22天_第3页
高三数学考前赢分30天 第22天_第4页
高三数学考前赢分30天 第22天_第5页
资源描述:

《高三数学考前赢分30天 第22天》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2013年江苏省栟茶高级中学高三数学考前赢分第22天核心知识1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围。2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率,即=tan(≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点、的直线的斜率为;(3)直线的方向向量,直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线:。3、直线的方程:(1)点斜式:已知直线

2、过点斜率为,则直线方程为,它不包括垂直于轴的直线。(2)斜截式:已知直线在轴上的截距为和斜率,则直线方程为,它不包括垂直于轴的直线。(3)两点式:已知直线经过、两点,则直线方程为,它不包括垂直于坐标轴的直线。(4)截距式:已知直线在轴和轴上的截距为,则直线方程为,它不包括垂直于坐标轴的直线和过原点的直线。(5)一般式:任何直线均可写成(A,B不同时为0)的形式。提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直

3、线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。4.设直线方程的一些常用技巧:(1)知直线纵截距,常设其方程为;(2)知直线横截距,常设其方程为(它不适用于斜率为0的直线);(3)知直线过点,当斜率存在时,常设其方程为,当斜率不存在时,则其方程为;(4)与直线平行的直线可表示为;(5)与直线垂直的直线可表示为.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。5、点到直线的距离及两平行直线间的距离:(1)点到直线的距离;(2)两平行线间的距离为。6、直线与直线的位置关系:(1)平行(斜率)且(在轴上截距);(2)相交;(3)重合且。提醒:(1)、、仅是

4、两直线平行、相交、重合的充分不必要条件!为什么?(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;(3)直线与直线垂直。7、对称(中心对称和轴对称)问题——代入法:提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解。8、简单的线性规划:(1)二元一次不等式表示的平面区域:①法一:先把二元一次不等式改写成或的形式,前者表示直线的上方区域,后者表示直线的下方区域;法二:用特殊点判断;②无等号时用虚线表示不包含直线,有等号时用实线表示包含直线;③设点,,若与同号,则P,Q在直线的同侧,异号则在直线的异侧。(2)线性

5、规划问题中的有关概念:①满足关于的一次不等式或一次方程的条件叫线性约束条件。②关于变量的解析式叫目标函数,关于变量一次式的目标函数叫线性目标函数;③求目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题;④满足线性约束条件的解()叫可行解,由所有可行解组成的集合叫做可行域;⑤使目标函数取得最大值或最小值的可行解叫做最优解;(3)求解线性规划问题的步骤是什么?①根据实际问题的约束条件列出不等式;②作出可行域,写出目标函数;③确定目标函数的最优位置,从而获得最优解。(4)在求解线性规划问题时要注意:①将目标函数改成斜截式方程;②寻找最优解时注意作图规范。9、圆的方程:⑴圆的标

6、准方程:。⑵圆的一般方程:,特别提醒:只有当时,方程才表示圆心为,半径为的圆(二元二次方程表示圆的充要条件是什么?(且且));⑶圆的参数方程:(为参数),其中圆心为,半径为。圆的参数方程的主要应用是三角换元:;。⑷为直径端点的圆方程10、点与圆的位置关系:已知点及圆,(1)点M在圆C外;(2)点M在圆C内;(3)点M在圆C上。11、直线与圆的位置关系:直线和圆有相交、相离、相切。可从代数和几何两个方面来判断:(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):相交;相离;相切;(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为,则相交;相离;相切。提醒:

7、判断直线与圆的位置关系一般用几何方法较简捷。12、圆与圆的位置关系(用两圆的圆心距与半径之间的关系判断):已知两圆的圆心分别为,半径分别为,则(1)当时,两圆外离;(2)当时,两圆外切;(3)当时,两圆相交;(4)当时,两圆内切;(5)当时,两圆内含。13、圆的切线与弦长:(1)切线:①过圆上一点圆的切线方程是:,过圆上一点圆的切线方程是:,一般地,如何求圆的切线方程?(抓住圆心到直线的距离等于半径);②从圆外一点引圆的切线一定有两条,可先设切线方程,再根

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。