《函数与导数练习》word版

《函数与导数练习》word版

ID:29628446

大小:325.50 KB

页数:7页

时间:2018-12-21

《函数与导数练习》word版_第1页
《函数与导数练习》word版_第2页
《函数与导数练习》word版_第3页
《函数与导数练习》word版_第4页
《函数与导数练习》word版_第5页
资源描述:

《《函数与导数练习》word版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、函数与导数一、选择题1、函数的单调递增区间是A.B.(0,3)C.(1,4)D.w.w.w.k.s.5.u.c.o.m2、若函数,则下列结论正确的是()A.,在上是增函数w.w.w.k.s.5.u.c.o.mB.,在上是减函数C.,是偶函数D.,是奇函数3、为了得到函数的图像,只需把函数的图像上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度4、函数的

2、图像大致为().1xy1OAxyO11BxyO11Cxy11DO5、定义在R上的函数f(x)满足f(x)=,则f(2009)的值为()A.-1B.0C.1D.26、已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,则().A.B.C.D.7、函数的图像(A)关于原点对称(B)关于主线对称(C)关于轴对称(D)关于直线对称8、.(2009全国卷Ⅱ文)设则(A)(B)(C)(D)9、已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为(如图2所示).那么对于图

3、中给定的,下列判断中一定正确的是A.在时刻,甲车在乙车前面B.时刻后,甲车在乙车后面C.在时刻,两车的位置相同D.时刻后,乙车在甲车前面10、设<b,函数的图像可能是11、函数的定义域为A.   B.   C.    D.12、已知函数是上的偶函数,若对于,都有,且当时,,则的值为13.若存在过点的直线与曲线和都相切,则等于A.或B.或C.或D.或14、设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为A.   B.   C.    D.15、设,则Aa

4、6、设函数则不等式的解集是()ABCD17.曲线在点处的切线方程为A.B.C.D.18、设,则A.B.C.D.19、的值为【】A.B.C.D.20、若函数的导函数在区间上是增函数,则函数在区间上的图象可能是【】yababaoxoxybaoxyoxybA.B.C.D.21、下列函数中,满足“对任意,(0,),当<时,都有>的是A.=B.=C.=D22、已知函数满足:x≥4,则=;当x<4时=,则=(A)(B)(C)(D)23、定义在R上的偶函数满足:对任意的,有.则(A)(B)(C)(D)24、设函数则A在

5、区间内均有零点。B在区间内均无零点。C在区间内有零点,在区间内无零点。D在区间内无零点,在区间内有零点。25、已知函数若则实数的取值范围是ABCD26、定义在R上的偶函数的部分图像如右图所示,则在上,下列函数中与的单调性不同的是A.B.C.D.27、若函数的零点与的零点之差的绝对值不超过0.25,则可以是A.B.C.D.二、填空题1.若函数在处取极值,则2、.若曲线存在垂直于轴的切线,则实数的取值范围是.3、已知函数若,则.4、在平面直角坐标系中,点P在曲线上,且在第二象限内,已知曲线C在点P处的切线的斜

6、率为2,则点P的坐标为.5、已知,函数,若实数、满足,则、的大小关系为.6、已知集合,若则实数的取值范围是,其中=.7、曲线在点(0,1)处的切线方程为。三、解答题1、已知函数.(I)若函数的图象过原点,且在原点处的切线斜率是,求的值;(II)若函数在区间上不单调,求的取值范围.2、设函数.(Ⅰ)若曲线在点处与直线相切,求的值;(Ⅱ)求函数的单调区间与极值点.3、已知函数,其中(1)当满足什么条件时,取得极值?4.设函数,其中常数a>1(Ⅰ)讨论f(x)的单调性;5、已知函数,a>0,w.w.w.k.s.

7、5.u.c.o.m(Ⅰ)讨论的单调性;(Ⅱ)设a=3,求在区间{1,}上值域。期中e=2.71828…是自然对数的底数。6、设函数.(1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围7、设函数,求函数的单调区间;w.w.w.k.s.5.u.c.o.m8、设函数(Ⅰ)当曲线处的切线斜率(Ⅱ)求函数的单调区间与极值;9、已知函数的图象在与轴交点处的切线方程是。(I)求函数的解析式;(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.1010、已知函

8、数的导函数的图象关于直线x=2对称.求b的值;11、设,且曲线y=f(x)在x=1处的切线与x轴平行。求a的值,并讨论f(x)的单调性;12、已知函数求的单调区间;若在处取得极值,直线y=m与的图象有三个不同的交点,求m的取值范围。13、已知函数.(1)设,求函数的极值;14、已知函数其中当时,求曲线处的切线的斜率;(2)若,且当时,12a恒成立,试确定的取值范围.15、已知函数且(I)试用含的代数式表示;(Ⅱ)求的单调区间;

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。