欢迎来到天天文库
浏览记录
ID:29625460
大小:534.56 KB
页数:22页
时间:2018-12-21
《九年级数学下册 27.2 与圆有关的位置关系 27.2.3 切线同步跟踪训练(含解析)(新版)华东师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、27.2.3切线一.选择题(共8小题)1.下列说法正确的是( )A.相切两圆的连心线经过切点B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦D.相等的圆心角所对的弦相等2.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于( )A.20°B.25°C.40°D.50°3.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是( )A
2、.3B.2C.1D.04.如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为( )A.25°B.30°C.35°D.45.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )A.30°B.45°C.60°D.40°6.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为( )A.2.5B.1.6
3、C.1.5D.17.如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为( )A.2πB.4πC.2D.48.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是( )A.3B.4C.4D.2二.填空题(共6小题)9.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为 ________
4、_ cm.10.如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA= _________ .11.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是 _________ °.12.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C= _________ 度.13.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是 _________ .(结果保留π
5、)三.解答题(共8小题)14.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.15.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.16.如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连
6、接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.17.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.18.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD= _________ °,理由是 _________ ;(2)⊙O的半径为3,AC=4,求CD的长.19.如图,⊙O的半径为4,B是⊙O外
7、一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.20.如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC.(1)求∠ACB的度数;(2)若AC=8,求△ABF的面积.21.如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.27.2.3切线
8、参考答案与试题解析一.选择题(共8小题)1.下列说法正确的是( )A.相切两圆的连心线经过切点B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦D.相等的圆心角所对的弦相等考点:切线的性质;圆的认识;垂径定理;圆心角、弧、弦的关系.分析:要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.(1)等弧指的是在同圆或等圆中,能够完全重合的弧.长度相等的两条弧,不一定能够完全重合;
此文档下载收益归作者所有