资源描述:
《高中数学 1.4.2 正弦函数、余弦函数的性质备课资料 新人教a版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中数学1.4.2正弦函数、余弦函数的性质备课资料新人教A版必修4一、近几年三角函数知识的变动情况三角函数一直是高中固定的传统内容,但近几年对这部分内容的具体要求变化较大.1998年4月21日,国家教育部专门调整了高中数学的部分教学内容,其中的调整意见第(7)条为:“对三角函数中的和差化积、积化和差的8个公式,不要求记忆”.1998年全国高考数学卷中,已尽可能减少了这8个公式的出现次数,在仅有的一次应用中,还将公式印在试卷上,以供查阅.而当时调整意见尚未生效(应在1999年生效),这不能不说对和积互化的8个公
2、式的要求是大大降低了.但是,如果认为这次调整的仅仅是8个公式,仅仅是降低了对8公式的要求,那就太表面、太肤浅了.我们知道,三角中的和积互化历来是三角部分的重点内容之一,相当部分的三角题都是围绕它们而设计的,它们也确实在很大程度上体现了公式变形的技巧和魅力.现在要求降低了,有关的题目已不再适合作为例(习)题选用了.这样一来,三角部分还要我们教些什么呢?又该怎样教?立刻成了部分教师心头的一大困惑.有鉴于此,我们认为很有必要重新审视这部分的知识体系,理清新的教学思路,以便真正落实这次调整的意见,实现“三个有利于(有
3、利于减轻学生过重的课业负担,有利于深化普通高中的课程改革,有利于稳定普通高中的教育教学秩序)”的既定目标.1.是“三角”还是“函数”应当说,三角函数是由“三角”和“函数”两部分知识构成的.三角本是几何学的衍生物,起始于古希腊的希帕克,经由托勒玫、利提克思等至欧拉而终于成为一门形态完备、枝繁叶茂的古典数学学科,历史上的很长一段时期,只有《三角学》盛行于世,却无“三角函数”之名.“三角函数”概念的出现,自然是在有了函数概念之后,从时间上看距今不过300余年.但是,此概念一经引入,立刻极大地改变了三角学的面貌,特别
4、是经过罗巴切夫斯基的开拓性工作,致使三角函数可以完全独立于三角形之外,而成为分析学的一个分支,其中的角也不限于正角,而是任意实数了.有的学者甚至认为可将它更名为角函数,这是有见地的,所以,作为一门学科的《三角学》已经不再独立存在.现行中学教材也取消了原来的《代数》《三角》《几何》的格局,将三角并入了代数内容.这本身即足以说明“函数”在“三角”中应占有的比重.从《代数学》的历史演变来看,在相当长的历史时期内,“式与方程”一直是它的核心内容,那时的教材都是围绕着它们展开的.所以,书中的分式变形、根式变形、指数式变
5、形和对数式变形可谓连篇累牍,所在皆是.这是由当时的数学认知水平决定的.而现在,函数已取代了式与方程成为代数的核心内容,比起运算技巧和变形套路来,人们更关注函数思想的认识价值和应用价值.1963年颁布的《数学教学大纲》提出数学三大能力时,首要强调的是“形式演算能力”,1990年的大纲突出强调的则是“逻辑思维能力”.现行高中《代数》课本中,充分阐发了幂函数、指数函数、对数函数的图象和性质及应用,对这三种代数式的变形却轻描淡写.所以,三角函数部分应重在“函数的图象和性质”是无疑的,这也是国际上普遍认可的观点.2.是
6、“图象”还是“变换”现行高中三角函数部分,单列了一章专讲三角函数,这是与数学发展的潮流相一致的.大多数师生头脑中反映出来的,还是“众多的公式,纷繁的变换”,而三角函数的“图象和性质”倒是在其次的,这一点,与前面所述的“幂、指、对”函数有着极大的反差.调整以后,降低这部分的要求,大面积地减少了题量.把“函数”作为关键词,将目光放在“图象和性质”上,应当是正确的选择,负担轻了,障碍小了,这更方便于我们将注意力转移到对函数图象和性质的关注上,这才是“三个有利于”得以贯彻的根本.3.国外的观点及启示下面来看一下美国和
7、德国的观点:美国没有全国统一的教材和《考试说明》,只有一个《课程标准》,在《课程标准》中,他们对三角函数提出了下面的要求:“会用三角学的知识解三角形;会用正弦、余弦函数研究客观实际中的周期现象;掌握三角函数图象;会解三角函数方程;会证基本的和简单的三角恒等式;懂得三角函数同极坐标、复数等之间的联系”.他们还特别指出,不要在推导三角恒等式上花费过多的时间,只要掌握一些简单的恒等式推导就可以了,比较复杂的恒等式就应该完全避免了.德国在10到12年级(相当于中国的高一到高三)每年都有三角内容,10年级要求如下:(1
8、)一个角的弧度;(2)三角函数sinx、cosx、tanx和它们的图象周期性;(3)三角形中角和边的计算;(4)重要关系(特指同角三角函数的平方关系、商数关系和倒数关系).另外,在11年级和12年级的“无穷小分析”中,继续研究三角函数的图象变换、求导、求积分、求极限.从以上罗列,我们可以看出下面的共同点:第一,突出强调三角函数的图象和性质;第二,淡化三角式的变形,仅涉及同角变换,而且要求较低,8公式