九年级数学上册第2章一元二次方程2.2一元二次方程的解法教案湘教版

九年级数学上册第2章一元二次方程2.2一元二次方程的解法教案湘教版

ID:29229911

大小:105.00 KB

页数:4页

时间:2018-12-17

九年级数学上册第2章一元二次方程2.2一元二次方程的解法教案湘教版_第1页
九年级数学上册第2章一元二次方程2.2一元二次方程的解法教案湘教版_第2页
九年级数学上册第2章一元二次方程2.2一元二次方程的解法教案湘教版_第3页
九年级数学上册第2章一元二次方程2.2一元二次方程的解法教案湘教版_第4页
资源描述:

《九年级数学上册第2章一元二次方程2.2一元二次方程的解法教案湘教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2一元二次方程的解法课题2.2一元二次方程的解法教学目标知识与技能:让学生掌握一元二次方程求根公式的推导,会运用公式法解一元二次方程。过程与方法:1.通过求根公式的推导,培养学生数学推理的严密性及严谨性.2.培养学生快速而准确的计算能力.情感态度与价值观:1.通过公式的引入,培养学生寻求简便方法的探索精神及创新意识.2.通过求根公式的推导,渗透分类的思想。重点求根公式的推导及用公式法解一元二次方程。难点对求根公式推导过程中依据的理论的深刻理解.教学方法课型教具教学过程:一、创设情境、导入新课通过作

2、业及练习深刻地体会到由配方法求方程的解有时计算起来很麻烦,每求一个一元二次方程的解,都要实施配方的步骤,进行较复杂的计算,这必然给方程的解的正确求出带来困难.能不能寻求一个快速而准确地求出方程的解是亟待解决的问题。二、合作交流、解读探究如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=,x2=分析:因为前面具体数字已做得很多,我们现在不妨把a

3、、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c二次项系数化为1,得x2+x=-配方,得:x2+x+()2=-+()2即(x+)2=∵b2-4ac≥0且4a2>0∴≥0直接开平方,得:x+=±个案修改4即x=∴x1=,x2=由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x=就得到方程的根.(2)这个式子

4、叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.例1.用公式法解下列方程.(1)2x2-4x-1=0(2)5x+2=3x2(3)(x-2)(3x-5)=0(4)4x2-3x+1=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.解:(1)a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=(2)将方程化为一般形式3x2-5x-2=0a=3,b=-5,c=

5、-2b2-4ac=(-5)2-4×3×(-2)=49>04x=x1=2,x2=-(3)将方程化为一般形式3x2-11x+9=0a=3,b=-11,c=9b2-4ac=(-11)2-4×3×9=13>0∴x=∴x1=,x2=(3)a=4,b=-3,c=1b2-4ac=(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根.三、巩固练习教材P37练习(1)、(2)(3)、(4)四、应用拓展例2.某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.(1)若

6、使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.(2)若使方程为一元二次方程m是否存在?若存在,请求出.你能解决这个问题吗?分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.(2)要使它为一元一次方程,必须满足:①或②或③解:(1)存在.根据题意,得:m2+1=2m2=1m=±1当m=1时,m+1=1+1=2≠04当m=-1时,m+1=-1+1=0(不合题意,舍去)∴当m=1时,方程为2x2-1-x=0a=2,b=-1,c=-1b2-4ac=(-1)2

7、-4×2×(-1)=1+8=9x=x1=,x2=-因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-.(2)存在.根据题意,得:①m2+1=1,m2=0,m=0因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0所以m=0满足题意.②当m2+1=0,m不存在.③当m+1=0,即m=-1时,m-2=-3≠0所以m=-1也满足题意.当m=0时,一元一次方程是x-2x-1=0,解得:x=-1当m=-1时,一元一次方程是-3x-1=0解得x=-因此,当m=0或-1时,该方程是一元一次方程,并且

8、当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-.五、归纳小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程;(4)初步了解一元二次方程根的情况.六、布置作业教材P424题.4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。