欢迎来到天天文库
浏览记录
ID:29214504
大小:1.74 MB
页数:26页
时间:2018-12-17
《七年级数学下册 第二章 平行线与相交线教案 北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章平行线与相交线●课时安排7课时第一课时●课题§2.1余角与补角●教学目标(一)教学知识点1.余角、补角及对顶角的定义.2.余角、补角及对顶角的性质.(二)能力训练要求1.经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力.2.在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题.(三)情感与价值观要求通过在具体情境下的讨论,让学生理解基础知识的同时,提高他们理论联系实际的观念.●教学重点1.互为余角、互为补角的定义及其性质.2.对顶角的定
2、义及性质.●教学难点互为余角、互为补角、对顶角的定义的理解.●教学方法讲练结合法教师在充分发挥学生的主观能动性的同时,来与学生进行交流、讨论,使之能运用本节内容解决一些实际问题.●教学过程Ⅰ.创设现实情景,引入新课[师]在上册第四章“平面图形及其位置关系”中,我们学习了“平行”与“垂直”,大家想一想:什么是平行线?[生]在同一平面内,不相交的两条直线叫做平行线.[师]很好,在日常生活中,我们随处可见道路、房屋、山川、桥梁……等这些大自然的杰作和人类的创造物.这其中蕴涵着大量的平行线和相交线.下面大家来看几幅图片:(出示投影片
3、:P49的桥的图片,宫殿、建筑物、门等的图片)你能从这些图案中找出平行线和相交线吗?(同学们踊跃发言,都能准确地找出其中的平行线和相交线)[师]同学们找得都对,说明大家掌握了所学内容.从今天开始,我们将深入学习这方面的内容:第二章平行线与相交线.在这一章里,我们将发现平行线和相交线的一些特征,并探索两条直线平行的条件,我们还将利用圆规和没有刻度的直尺,尝试着作一些美丽的图案.相信大家,一定会学得很好.图2-1Ⅱ.讲授新课[师]我们知道,光的反射是一种常见的物理现象,通过如图的实验装置我们可以验证光的反谢定律:活动内容:参照教
4、材p59光的反射实验提出下列问题:(1)模拟试验:通过模拟光的反射的试验,为学生提供生动有趣的问题情景,将其抽象为几何图形,为下面的探索做好准备。(2)利用抽象出的几何图形分三个层次提出问题,进行探究。i说出图中各角与∠3的关系。将学生的回答分类总结,从而得到余角、补角的定义。ii图中还有哪些角互补?哪些角互余?在巩固刚刚得到的概念的同时,为下一个问题作好铺垫。iii图中都有哪些角相等?由此你能够得到什么样的结论?在学生充分探究、交流后,得到余角、补角的性质。由此,我们得到了一个新的概念:互为余角.即:如果两个角的和是直角,
5、那么称这两个角互为余角(complementaryangle),也就是说其中一个角是另一个角的余角.只要有∠BDC+∠1=90°,就可知道∠1与∠BDC互为余角,反过来知道∠1与∠BDC是互为余角,就一定知道∠1与∠BDC的和为直角.再之:∠1与∠BDC是互为余角就是说:∠1是∠BDC的余角,∠BDC也是∠1的余角.大家看老师手里拿两个三角板(一边演示,一边叙述):这一个三角板的60°的角与另一个三角板的30°的角加起来正好是90°,那么我们说这两个角是互为余角.同学们应注意:(强调)(1)互为余角是对两个角而言的.(2)互
6、为余角仅仅表明了两个角的数量关系,而没有限制角的位置关系.[生]老师,我们知道了:两个角的和是直角,则这两个角是互为余角.刚才我们还讨论了:∠1+∠ADF=180°,∠EDB+∠1=180°.那么这样的两个角又叫什么呢?[师]这位同学问得好,这就是我们要学习的另一个概念:互为补角.即:如果两个角的和是平角,那么称这两个角互为补角(supplementaryangle).互为补角的概念的理解与互为余角的理解基本一样.哪些同学能尝试的说一下呢?[生甲]只要满足∠1+∠ADF=180°,就可知道∠1与∠ADF是互为补角.反之知道∠
7、1与∠ADF是互为补角,就一定可知道∠1与∠ADF的和是平角.[生乙]∠1与∠ADF是互为补角,就是说:∠1是∠ADF的补角,∠ADF也是∠1的补角.[生丙]互为补角也是对两个角而言的.与角的大小有关,而与位置无关.[生丁]∠EDB与∠1也是互为补角.[师]同学们回答得真棒.互为余角、互为补角都是针对两个角而言的,仅仅表示了两个角之间的数量关系,并没有限制角的位置关系.好,下面大家来想一想.(出示投影片§2.1A)在下图中,CD与EF垂直,∠1=∠2.(1)哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?
8、为什么?(3)∠ADF与∠BDE有什么关系?为什么?图2-2(同学们分组讨论,得结论)[生甲]在图中:∠1与∠ADC、∠2与∠ADC、∠BDC与∠1、∠BDC与∠2都是互为余角.∠1与∠ADF、∠EDB与∠1、∠ADF与∠2、∠EDB与∠2都是互为补角.[生乙]∠ADC与∠BDC相等,因为
此文档下载收益归作者所有