欢迎来到天天文库
浏览记录
ID:29185978
大小:1.09 MB
页数:13页
时间:2018-12-17
《高三物理曲线运动、万有引力考点例析知识精讲一 人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高三物理曲线运动、万有引力考点例析知识精讲一一.本周教学内容:曲线运动、万有引力考点例析(一)【典型例题】问题1:会用曲线运动的条件分析求解相关问题。[例1]质量为m的物体受到一组共点恒力作用而处于平衡状态,当撤去某个恒力F1时,物体可能做()A.匀加速直线运动B.匀减速直线运动C.匀变速曲线运动D.变加速曲线运动分析与解:当撤去F1时,由平衡条件可知:物体此时所受合外力大小等于F1,方向与F1方向相反。若物体原来静止,物体一定做与F1相反方向的匀加速直线运动。若物体原来做匀速运动,若F1与初速度方向在同
2、一条直线上,则物体可能做匀加速直线运动或匀减速直线运动,故A、B正确。若F1与初速度不在同一直线上,则物体做曲线运动,且其加速度为恒定值,故物体做匀变速曲线运动,故C正确,D错误。答案:A、B、C。[例2]图1中实线是一簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点。若带电粒子在运动中只受电场力作用,根据此图可作出正确判断的是()A.带电粒子所带电荷的符号B.带电粒子在a、b两点的受力方向C.带电粒子在a、b两点的速度何处较大D.带电粒子在a、b两点
3、的电势能何处较大分析与解:由于不清楚电场线的方向,所以在只知道粒子在a、b间受力情况是不可能判断其带电情况的。而根据带电粒子做曲线运动的条件可判定,在a、b两点所受到的电场力的方向都应在电场线上并大致向左。若粒子在电场中从a向b点运动,故在不间断的电场力作用下,动能不断减小,电势能不断增大。故选项B、C、D正确。问题2:会根据运动的合成与分解求解船过河问题。[例3]一条宽度为L的河流,水流速度为Vs,已知船在静水中的速度为Vc,那么:(1)怎样渡河时间最短?(2)若Vc>Vs,怎样渡河位移最小?(3)若V
4、c5、s/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?如图2丙所示,设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs。船漂的最短距离为:。此时渡河的最短位移为:。问6、题3:会根据运动的合成与分解求解绳联物体的速度问题。对于绳联问题,由于绳的弹力总是沿着绳的方向,所以当绳不可伸长时,绳联物体的速度在绳的方向上的投影相等。求绳联物体的速度关联问题时,首先要明确绳联物体的速度,然后将两物体的速度分别沿绳的方向和垂直于绳的方向进行分解,令两物体沿绳方向的速度相等即可求出。[例4]如图3所示,汽车甲以速度v1拉汽车乙前进,乙的速度为v2,甲、乙都在水平面上运动,求v1∶v2分析与解:如图4所示,甲、乙沿绳的速度分别为v1和v2cosα,两者应该相等,所以有v1∶v2=cosα∶7、1[例5]如图5所示,杆OA长为R,可绕过O点的水平轴在竖直平面内转动,其端点A系着一跨过定滑轮B、C的不可伸长的轻绳,绳的另一端系一物块M。滑轮的半径可忽略,B在O的正上方,OB之间的距离为H。某一时刻,当绳的BA段与OB之间的夹角为α时,杆的角速度为ω,求此时物块M的速率Vm。分析与解:杆的端点A点绕O点作圆周运动,其速度VA的方向与杆OA垂直,在所考察时其速度大小为:VA=ωR对于速度VA作如图6所示的正交分解,即沿绳BA方向和垂直于BA方向进行分解,沿绳BA方向的分量就是物块M的速率VM,因为物块8、只有沿绳方向的速度,所以VM=VAcosβ由正弦定理知,由以上各式得VM=ωHsinα问题4:会根据运动的合成与分解求解面接触物体的速度问题。求相互接触物体的速度关联问题时,首先要明确两接触物体的速度,分析弹力的方向,然后将两物体的速度分别沿弹力的方向和垂直于弹力的方向进行分解,令两物体沿弹力方向的速度相等即可求出。[例6]一个半径为R的半圆柱体沿水平方向向右以速度V0匀速运动。在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运
5、s/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?如图2丙所示,设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs。船漂的最短距离为:。此时渡河的最短位移为:。问
6、题3:会根据运动的合成与分解求解绳联物体的速度问题。对于绳联问题,由于绳的弹力总是沿着绳的方向,所以当绳不可伸长时,绳联物体的速度在绳的方向上的投影相等。求绳联物体的速度关联问题时,首先要明确绳联物体的速度,然后将两物体的速度分别沿绳的方向和垂直于绳的方向进行分解,令两物体沿绳方向的速度相等即可求出。[例4]如图3所示,汽车甲以速度v1拉汽车乙前进,乙的速度为v2,甲、乙都在水平面上运动,求v1∶v2分析与解:如图4所示,甲、乙沿绳的速度分别为v1和v2cosα,两者应该相等,所以有v1∶v2=cosα∶
7、1[例5]如图5所示,杆OA长为R,可绕过O点的水平轴在竖直平面内转动,其端点A系着一跨过定滑轮B、C的不可伸长的轻绳,绳的另一端系一物块M。滑轮的半径可忽略,B在O的正上方,OB之间的距离为H。某一时刻,当绳的BA段与OB之间的夹角为α时,杆的角速度为ω,求此时物块M的速率Vm。分析与解:杆的端点A点绕O点作圆周运动,其速度VA的方向与杆OA垂直,在所考察时其速度大小为:VA=ωR对于速度VA作如图6所示的正交分解,即沿绳BA方向和垂直于BA方向进行分解,沿绳BA方向的分量就是物块M的速率VM,因为物块
8、只有沿绳方向的速度,所以VM=VAcosβ由正弦定理知,由以上各式得VM=ωHsinα问题4:会根据运动的合成与分解求解面接触物体的速度问题。求相互接触物体的速度关联问题时,首先要明确两接触物体的速度,分析弹力的方向,然后将两物体的速度分别沿弹力的方向和垂直于弹力的方向进行分解,令两物体沿弹力方向的速度相等即可求出。[例6]一个半径为R的半圆柱体沿水平方向向右以速度V0匀速运动。在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运
此文档下载收益归作者所有