高中数学第2章统计2.4线性回归方程1教案苏教版必修3

高中数学第2章统计2.4线性回归方程1教案苏教版必修3

ID:29149661

大小:59.00 KB

页数:5页

时间:2018-12-17

高中数学第2章统计2.4线性回归方程1教案苏教版必修3_第1页
高中数学第2章统计2.4线性回归方程1教案苏教版必修3_第2页
高中数学第2章统计2.4线性回归方程1教案苏教版必修3_第3页
高中数学第2章统计2.4线性回归方程1教案苏教版必修3_第4页
高中数学第2章统计2.4线性回归方程1教案苏教版必修3_第5页
资源描述:

《高中数学第2章统计2.4线性回归方程1教案苏教版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.4 线性回归方程1整体设计教材分析在实际问题中,变量之间的关系有两类:一类是确定性关系,变量之间的关系可以用函数表示.例如,正方形的面积S与边长a之间就是确定性关系,可以用函数s=a2表示.还有一类是非确定性关系,例如“学生数学成绩与物理成绩之间的关系”“粮食的产量与施肥量之间的关系”“商品的销售额与广告费支出之间的关系”“人体的脂肪百分比和年龄之间的关系”等贴近学生的实际问题,它不能由一个变量的数值精确地确定另一个变量的数值.像这种自变量取一定值时,因变量的取值带有一定随机性,这样的两个变量之间的关系,我们称之为相关关系.“线性回归方程”

2、这一节是为了帮助我们了解变量之间的相关关系,使学生学会区别变量之间的函数关系与变量相关关系,从而达到正确判断实际生活中两个变量之间的相关关系并会作出变量相关关系的散点图;通过散点图的直观性,看各点是否在某条直线附近摆动来为判断两个变量之间的相关关系打下坚实的基础.通过对人体脂肪百分比和年龄之间的关系散点图的分析,引入描述两个变量之间关系的线性回归方程(模型),使学生通过探索用多种方法确定线性回归直线,学会类比寻求新的突破方法,体会最小二乘法的思想,掌握计算回归方程的斜率与截距的方法,求出回归直线方程.通过典型的求解,强化回归思想的建立,理解回归

3、直线与观测数据的关系.通过引导学生感受生活中实际问题转化为数学问题,学会类比寻求新的突破方法,体会最小二乘法的思想,培养学生的创新精神,不断收取信息,学会用统计知识对实际问题进行数学分析.通过课堂目标检测达到强化所学知识点,提高学生对现代化教学工具的应用能力.三维目标1.通过实例,使学生感受到现实世界中变量之间除了函数关系外,还存在着虽无确定的函数关系,但却有一定的关联性的相关关系,相关关系是一种非确定性关系.2.通过收集实际问题中两个有关联变量的数据作出散点图,直观认识变量间的相关关系.3.经历用不同估算方法描述两个变量线性相关的过程,运用最

4、小二乘法的思想,发现可用线性回归方程近似地表示两个具有相关关系的变量之间的关系,并能根据给出的线性回归方程系数公式建立线性回归方程.重点难点教学重点:1.会区别变量之间的函数关系与变量相关关系;会举例说明现实生活中变量之间的相关关系.2.会作散点图,并由此对变量间的关系作出直观的判断,会求回归直线.教学难点:1.对变量之间的相关关系的理解;变量之间的函数关系与变量相关关系的区别.2.了解最小二乘法的思想,能根据给出的线性回归方程的系数公式建立回归方程.课时安排2课时教学过程第1课时导入新课(多媒体播放四个问题,组织学生分析、思考)问题1:将汽油

5、以均匀的速度注入桶里,注入的时间t与注入的油量y如下表:从表里数据得出油量y与时间t之间的函数关系式为________________.问题2:圆的面积S与半径r之间的函数关系式为________________.问题3:小麦的产量y千克每亩与施肥量x千克每亩之间的关系如下表:从表里数据能得出小麦的产量y与施肥量x之间的函数关系式吗?问题4:人的体重y与身高x之间有什么关系呢?分析问题1:因为是以均匀的速度注入桶里,所以注入的油量y与注入的时间t成正比例关系,由表格数据知,注入的油量y与注入的时间t之间的函数关系式为y=2x(x≥0).因为是

6、实际问题,所以要特别注意自变量的取值范围要有实际意义.分析问题2:这是大家熟悉的面积公式,所以圆的面积S与半径r之间的函数关系式为S=πr2(r>0).第1、2两个问题中的变量间的函数关系是确定的,在我们的现实生活,两个变量之间存在确定性的关系是极少的,而两个变量之间存在不确定性的关系是很普遍的,那么问题3中两个变量之间是确定性的函数关系,还是不确定性的关系呢?学生甲分析问题3:此问中两个变量之间是确定性的函数关系,设为y=kx+b,当x=10时,函数值y为420;当x=20时,函数值y为440,代入可得函数关系式为y=2x+400(x≥0).

7、学生乙:学生甲的回答是错误的,若函数关系式为y=20x+400(x≥0),当x=30时,函数值为460,而不是470.但是可以感觉到施肥量越大,小麦的产量就越高.教师分析:从表格里容易发现施肥量越大,小麦的产量就越高.但是,施肥量并不是影响小麦产量的唯一因素,小麦的产量还与土壤的质量、降雨量、田间管理等诸多因素的影响有关,更何况当施肥量超出一定范围时,还会造成小麦的倒塌,以致颗粒无收.这时两个变量之间就不是确定性的函数关系,那么这两个变量之间究竟是什么关系呢?这就是我们本节课所要研究的问题——变量之间的相关关系.(引入新课,书写课题)推进新课新

8、知探究由学生举出现实生活中的相关关系的例子,教师归纳概念!1.变量之间有一定的联系,但不能完全用函数来表达,即当自变量一定时,因变量的取值带有一定的随

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。