高中数学 第一章 1.1.2余弦定理(一)导学案新人教a版必修5

高中数学 第一章 1.1.2余弦定理(一)导学案新人教a版必修5

ID:29146495

大小:151.00 KB

页数:4页

时间:2018-12-17

高中数学 第一章 1.1.2余弦定理(一)导学案新人教a版必修5_第1页
高中数学 第一章 1.1.2余弦定理(一)导学案新人教a版必修5_第2页
高中数学 第一章 1.1.2余弦定理(一)导学案新人教a版必修5_第3页
高中数学 第一章 1.1.2余弦定理(一)导学案新人教a版必修5_第4页
资源描述:

《高中数学 第一章 1.1.2余弦定理(一)导学案新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1.2余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的222222222积的两倍.即a=b+c-2bccos_A,b=c+a-2cacos_B,c=a+b-2abcos_C.2.余弦定理的推论222222222b+c-ac+a-ba+b-ccosA=;cosB=;cosC=.2bc2ca2ab3.在△ABC中:222(1)若a+b-c=0,则C=90°;222(2)若c=a+b-ab,则C=60°;222(3)若c=a+b+2ab,则C=13

2、5°.一、选择题1.在△ABC中,已知a=1,b=2,C=60°,则c等于()A.3B.3C.5D.5答案A2.在△ABC中,a=7,b=43,c=13,则△ABC的最小角为()ππA.B.36ππC.D.412答案B解析∵a>b>c,∴C为最小角,222a+b-c由余弦定理cosC=2ab2227+43-133π==.∴C=.2×7×43263.在△ABC中,已知a=2,则bcosC+ccosB等于()A.1B.2C.2D.4答案C2222222a+b-cc+a-b2a解析bcosC+ccosB=b·+c·==a=2.2ab2ac2a24.在△ABC中,已知b=a

3、c且c=2a,则cosB等于()1322A.B.C.D.4443答案B222解析∵b=ac,c=2a,∴b=2a,b=2a,222222a+c-ba+4a-2a3∴cosB===.2ac2a·2a42Ac-b5.在△ABC中,sin=(a,b,c分别为角A,B,C的对应边),则△ABC的形状22c为()A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形答案B2A1-cosAc-b解析∵sin==,222c222bb+c-a222∴cosA==⇒a+b=c,符合勾股定理.c2bc故△ABC为直角三角形.12226.在△ABC中,已知面积S=(a+b-c),则角

4、C的度数为()4A.135°B.45°C.60°D.120°答案B12221解析∵S=(a+b-c)=absinC,42222222∴a+b-c=2absinC,∴c=a+b-2absinC.222由余弦定理得:c=a+b-2abcosC,∴sinC=cosC,∴C=45°.二、填空题2227.在△ABC中,若a-b-c=bc,则A=________.答案120°8.△ABC中,已知a=2,b=4,C=60°,则A=________.答案30°222解析c=a+b-2abcosC22=2+4-2×2×4×cos60°=12∴c=23.ac1由正弦定理:=得sinA=

5、.sinAsinC2∵a0,b>0),则最大角为________.答案120°2222解析易知:a+ab+b>a,a+ab+b>b,设最大角为θ,22222a+b-a+ab+b1则cosθ==-,2ab2∴θ=120°.π10.在△ABC中,BC=1,B=,当△ABC的面积等于3时,tanC=________.3答案-231222解析S△ABC=acsinB=3,∴c=4.由余弦定理得,b=a+c-2accosB=13,2222a+b-c112∴cosC==-,sinC=,2ab1313

6、∴tanC=-12=-23.三、解答题11.在△ABC中,已知CB=7,AC=8,AB=9,试求AC边上的中线长.222222AB+AC-BC9+8-72解由条件知:cosA===,设中线长为x,由余弦定理知:2·AB·AC2×9×83AC222AC222x=2+AB-2··ABcosA=4+9-2×4×9×=4923⇒x=7.所以,所求中线长为7.212.在△ABC中,BC=a,AC=b,且a,b是方程x-23x+2=0的两根,2cos(A+B)=1.(1)求角C的度数;(2)求AB的长;(3)求△ABC的面积.解(1)cosC=cos[π-(A+B)]1=-co

7、s(A+B)=-,2又∵C∈(0°,180°),∴C=120°.2(2)∵a,b是方程x-23x+2=0的两根,a+b=23,∴ab=2.2222∴AB=b+a-2abcos120°=(a+b)-ab=10,∴AB=10.13(3)S△ABC=absinC=.22能力提升13.(2010·潍坊一模)在△ABC中,AB=2,AC=6,BC=1+3,AD为边BC上的高,则AD的长是________.答案3222BC+AC-AB2解析∵cosC==,2×BC×AC22∴sinC=.2∴AD=AC·sinC=3.14.在△ABC中,acosA+bcosB=ccosC,试

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。