高中数学 第1章 解三角形1.1 正弦定理同步教学案 苏教版必修5

高中数学 第1章 解三角形1.1 正弦定理同步教学案 苏教版必修5

ID:29146254

大小:468.50 KB

页数:9页

时间:2018-12-17

高中数学 第1章 解三角形1.1 正弦定理同步教学案 苏教版必修5_第1页
高中数学 第1章 解三角形1.1 正弦定理同步教学案 苏教版必修5_第2页
高中数学 第1章 解三角形1.1 正弦定理同步教学案 苏教版必修5_第3页
高中数学 第1章 解三角形1.1 正弦定理同步教学案 苏教版必修5_第4页
高中数学 第1章 解三角形1.1 正弦定理同步教学案 苏教版必修5_第5页
资源描述:

《高中数学 第1章 解三角形1.1 正弦定理同步教学案 苏教版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§1.1 正弦定理(一)课时目标 1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC中,A+B+C=______,++=.2.在Rt△ABC中,C=,则=________,=_______________________________.3.一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即______,这个比值是________________.一、填空题1.在△ABC中,角A,

2、B,C的对边分别是a,b,c,若A∶B∶C=1∶2∶3,则a∶b∶c等于________.2.若△ABC中,a=4,A=45°,B=60°,则边b的值为____________.3.在△ABC中,sin2A=sin2B+sin2C,则△ABC的形状为________________.4.在△ABC中,若sinA>sinB,则角A与角B的大小关系为________.5.在△ABC中,A=60°,a=,b=,则B等于______________.6.在△ABC中,AC=,BC=2,B=60°,则C=______________________

3、_____.7.在△ABC中,若tanA=,C=150°,BC=1,则AB=________.8.在△ABC中,b=1,c=,C=,则a=________.9.在△ABC中,已知a,b,c分别为内角A,B,C的对边,若b=2a,B=A+60°,则A=______.10.在△ABC中,角A,B,C所对的边分别为a,b,c,如果c=a,B=30°,那么角C等于________.二、解答题11.在△ABC中,已知a=2,A=30°,B=45°,解三角形.12.在△ABC中,已知a=2,b=6,A=30°,解三角形.能力提升13.在△ABC中,角

4、A,B,C所对的边分别为a,b,c若a=,b=2,sinB+cosB=,则角A的大小为________.14.在锐角三角形ABC中,A=2B,a,b,c所对的角分别为A,B,C,求的取值范围.1.利用正弦定理可以解决两类有关三角形的问题:(1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a、b和A,用正弦定理求B时的各种情况.A为锐角a

5、无解一解(直角)两解(一锐角,一钝角)一解(锐角)A为直角或钝角a≤ba≤b无解一解(锐角)§1.1 正弦定理(一)答案知识梳理1.π 2.sinA sinB 4.== 三角形外接圆的直径2R作业设计1.1∶∶22.2解析 由正弦定理=,得=,∴b=2.3.直角三角形解析 sin2A=sin2B+sin2C⇔(2R)2sin2A=(2R)2sin2B+(2R)2sin2C,即a2=b2+c2,由勾股定理的逆定理得△ABC为直角三角形.4.A>B解析 由sinA>sinB⇔2RsinA>2RsinB⇔a>b⇔A>B.5.45°解析 由=得s

6、inB===.∵a>b,∴A>B,B<60°∴B=45°.6.75°解析 由正弦定理得=,∴sinA=.∵BC=2

7、,∴tanA=,∴A=30°.10.120°解析 ∵c=a,∴sinC=sinA=sin(180°-30°-C)=sin(30°+C)=,即sinC=-cosC.∴tanC=-.又C∈(0°,180°),∴C=120°.11.解 ∵==,∴b====4.∵C=180°-(A+B)=180°-(30°+45°)=105°,∴c====2+2.12.解 a=2,b=6,absinA,所以本题有两解,由正弦定理得:sinB===,故B=60°或120°.当B=60°时,C=90

8、°,c==4;当B=120°时,C=30°,c=a=2.所以B=60°,C=90°,c=4或B=120°,C=30°,c=2.13.解析 ∵sinB+cosB=sin(+B)=.∴sin(+B

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。