高中数学 2.5平面向量应用举例学案 新人教a版必修4

高中数学 2.5平面向量应用举例学案 新人教a版必修4

ID:29145111

大小:135.00 KB

页数:5页

时间:2018-12-17

高中数学 2.5平面向量应用举例学案 新人教a版必修4_第1页
高中数学 2.5平面向量应用举例学案 新人教a版必修4_第2页
高中数学 2.5平面向量应用举例学案 新人教a版必修4_第3页
高中数学 2.5平面向量应用举例学案 新人教a版必修4_第4页
高中数学 2.5平面向量应用举例学案 新人教a版必修4_第5页
资源描述:

《高中数学 2.5平面向量应用举例学案 新人教a版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.5平面向量应用举例一、预习目标预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。二、预习内容阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:1.例1如果不用向量的方法,还有其他证明方法吗?2.利用向量方法解决平面几何问题的“三步曲”是什么?3.例3中,⑴为何值时,

2、F1

3、最小,最小值是多少?⑵

4、F1

5、能等于

6、G

7、吗?为什么?三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、

8、学习内容1.运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题.2.运用向量的有关知识解决简单的物理问题.二、学习过程探究一:(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?(2)举出几个具有线性运算的几何实例.例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.已知:平行四边形ABCD.求证:.试用几何方法解决这个问题利用向量的方法解决平面几何问题的“三步曲”?(1)建立平面几何与向量的联系,(2)通过向量运

9、算,研究几何元素之间的关系,(3)把运算结果“翻译”成几何关系。变式训练:中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设(1)证明A、O、E三点共线;(2)用表示向量。例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?探究二:两个人提一个旅行包,夹角越大越费力.在单杠上做引体向上运动,两臂夹角越小越省力.这些力的问题是怎么回事?例3.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引

10、体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?请同学们结合刚才这个问题,思考下面的问题:⑴为何值时,

11、F1

12、最小,最小值是多少?⑵

13、F1

14、能等于

15、G

16、吗?为什么?例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸.已知船的速度

17、v1

18、=10km/h,水流的速度

19、v2

20、=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1min)?变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。三、反思总结结合图

21、形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。四、当堂检测1.已知,求边长c。2.在平行四边形ABCD中,已知AD=1,AB=2,对角线BD=2,求对角线AC的长。3.在平面上的三个力作用于一点且处于平衡状态,的夹角为,求:(1)的大小;(2)与夹

22、角的大小。课后练习与提高一、选择题1.给出下面四个结论:①若线段AC=AB+BC,则向量;②若向量,则线段AC=AB+BC;③若向量与共线,则线段AC=AB+BC;④若向量与反向共线,则.其中正确的结论有()A.0个B.1个C.2个D.3个2.河水的流速为2,一艘小船想以垂直于河岸方向10的速度驶向对岸,则小船的静止速度大小为()A.10B.C.D.123.在中,若=0,则为()A.正三角形B.直角三角形C.等腰三角形D.无法确定二、填空题4.已知两边的向量,则BC边上的中线向量用、表示为5.已知,则、、两两夹角是课后练习答案

23、1.B2.B3.C4.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。