欢迎来到天天文库
浏览记录
ID:29144607
大小:91.00 KB
页数:4页
时间:2018-12-17
《高中数学 2.2.1 向量的加法运算及其几何意义学案 新人教a版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.1向量的加法运算及其几何意义课前预习学案预习目标:通过复习提问回顾向量定义及有关概念;利用问题情景提出向量加法运算、给出实际背景。预习内容:1、复习:提问向量的定义以及有关概念。强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置ABC2、情景设置:(1)某人从A到B,再从B按原方向到C,CAB则两次的位移和:。(2)若上题改为从A到B,再从B按反方向到C,ABC则两次的位移和:。
2、(3)某车从A到B,再从B改变方向到C,ABC则两次的位移和:。(4)船速为,水速为,则两速度和:。3、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;学习过程:1、向量的加法:叫做向量
3、的加法.2、三角形法则(“”)如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b,规定:。ABCa+ba+baabbabba+ba探究:(1)两相向量的和仍是;(2)当向量与不共线时,+的方向,且
4、+
5、
6、
7、+
8、
9、;OABaaabbb(3)当与同向时,则+、、且
10、+
11、
12、
13、+
14、
15、,当与反向时,若
16、
17、>
18、
19、,则+的方向与相同,且
20、+
21、
22、
23、-
24、
25、;若
26、
27、<
28、
29、,则+的方向与相同,且
30、+b
31、
32、
33、-
34、
35、.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的
36、起点,可以推广到n个向量连加3.例1、已知向量、,求作向量+作法:4.加法的交换律和平行四边形法则问题:上题中+的结果与+是否相同?从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)2)向量加法的交换律:5.向量加法的结合律:证:6、应用举例:例二(P94—95)练习:P95课后练习与提高1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为,求水流的速度.2、一艘船距对岸,以的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km,求河水的流速.3、一艘船
37、从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.4、一艘船以5km/h的速度在行驶,同时河水的流速为2km/h,则船的实际航行速度大小最大是km/h,最小是km/h5、已知两个力F1,F2的夹角是直角,且已知它们的合力F与F1的夹角是60,
38、F
39、=10N求F1和F2的大小.6、用向量加法证明:两条对角线互相平分的四边形是平行四边形参考答案:略
此文档下载收益归作者所有