2018版高中数学 第二章 数列章末复习课学案 苏教版必修5

2018版高中数学 第二章 数列章末复习课学案 苏教版必修5

ID:29033231

大小:113.00 KB

页数:11页

时间:2018-12-16

2018版高中数学 第二章 数列章末复习课学案 苏教版必修5_第1页
2018版高中数学 第二章 数列章末复习课学案 苏教版必修5_第2页
2018版高中数学 第二章 数列章末复习课学案 苏教版必修5_第3页
2018版高中数学 第二章 数列章末复习课学案 苏教版必修5_第4页
2018版高中数学 第二章 数列章末复习课学案 苏教版必修5_第5页
资源描述:

《2018版高中数学 第二章 数列章末复习课学案 苏教版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二章数列学习目标1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识.2.提高解决等差数列、等比数列问题的能力,培养综合运用知识解决问题的能力.知识点一对比归纳等差数列和等比数列的基本概念和公式等差数列等比数列定义如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).递推公式an+1-an=d=q中项由三个

2、数a,A,b组成的等差数列可以看成最简单的等差数列.这时A叫做a与b的等差中项,并且A=如果a,G,b成等比数列,那么G叫做a与b的等比中项,且G=±通项公式an=a1+(n-1)dan=a1qn-1前n项和公式Sn==na1+dq≠1时,Sn==,q=1时,Sn=na1性质am,an的关系am-an=(m-n)d=qm-nm,n,s,t∈N,m+am+an=as+ataman=asatn=s+t性质{kn}是等差数列,且kn∈N{akn}是等差数列{akn}是等比数列n=2k-1,k∈NS2k-1=(2k-1)·aka1a2·…·a2k-1=a判断方法

3、利用定义an+1-an是同一个常数是同一个常数利用中项an+an+2=2an+1anan+2=a利用通项公式an=pn+q,其中p、q为常数an=abn(a≠0,b≠0)利用前n项和公式Sn=an2+bn(a,b为常数)Sn=A(qn-1),其中A≠0,q≠0且q≠1或Sn=np(p为非零常数)知识点二数列中的公式推导和解题过程中用到的基本方法和思想1.在求等差数列和等比数列的通项公式时,分别用到了________法和________法.2.在求等差数列和等比数列的前n项和时,分别用到了________________法和________________

4、法.3.等差数列和等比数列各自都涉及5个量,已知其中任意________个求其余________个,用到了方程思想.4.在研究等差数列和等比数列单调性,等差数列前n项和最值问题时,都用到了________________思想.类型一方程思想求解数列问题例1设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列公式.(1)求数列{an}的通项公式;(2)令bn=lna3n+1,n=1,2,…,求数列{bn}的前n项和Tn.反思与感悟在等差数列和等比数列中,通项公式an和前n项和公式Sn共涉及五

5、个量:a1,an,n,q(d),Sn,其中首项a1和公比q(公差d)为基本量,“知三求二”是指将已知条件转换成关于a1,an,n,q(d),Sn的方程组,通过方程的思想解出需要的量.跟踪训练1记等差数列的前n项和为Sn,设S3=12,且2a1,a2,a3+1成等比数列,求Sn.类型二转化与化归思想求解数列问题例2在数列{an}中,Sn+1=4an+2,n∈N,a1=1.(1)设cn=,求证数列{cn}是等差数列;(2)求数列{an}的通项公式及前n项和的公式.反思与感悟由递推公式求通项公式,要求掌握的方法有两种,一种求法是先找出数列的前几项,通过观察、归

6、纳得出,然后证明;另一种是通过变形转化为等差数列或等比数列,再采用公式求出.跟踪训练2设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N).(1)求a2,a3的值;(2)求证:数列{Sn+2}是等比数列.类型三函数思想求解数列问题命题角度1借助函数性质解数列问题例3已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是一个等比数列的第2项、第3项、第4项.(1)求数列{an}的通项公式;(2)设bn=(n∈N),Sn=b1+b2+…+bn,是否存在t,使得对任意的n均有Sn>总成立

7、?若存在,求出最大的整数t;若不存在,请说明理由.反思与感悟数列是一种特殊的函数,在求解数列问题时,若涉及参数取值范围、最值问题或单调性时,均可考虑采用函数的性质及研究方法指导解题.值得注意的是数列定义域是正整数集或{1,2,3,…,n},这一特殊性对问题结果可能造成影响.跟踪训练3已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{an}的通项公式;(2)设Tn=Sn-(n∈N),求数列{Tn}最大项的值与最小项的值.命题角度2以函数为载体给出数列例4已知函数f(x)=2-

8、x,无穷数列{an}满足an+1=f(an),n∈N.(1)若a1=0,求a2,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。