欢迎来到天天文库
浏览记录
ID:29032706
大小:540.00 KB
页数:14页
时间:2018-12-16
《2017年中考数学备考专题复习 圆的有关计算(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、圆的有关计算一、单选题(共12题;共24分)1、如图,在边长为1的正方形中,以各顶点为圆心,对角线的长的一半为半径在正方形内画弧,则图中阴影部分的面积为( ) A、2-πB、πC、-1D、2、在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作弧BAC,如图所示.若AB=4,AC=2,S1-S2=,则S3-S4的值是( )A、B、C、D、3、如图所示是某公园为迎接“中国﹣﹣南亚博览会”设置的一休闲区.∠AOB=90°,弧AB的半径OA长是6米,C是OA
2、的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是( )A、米2B、米2C、米2D、米24、如图,⊙O中,半径OA=4,∠AOB=120°,用阴影部分的扇形围成的圆锥底面圆的半径长是( ).A、1B、C、D、25、如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为( )A、πB、πC、πD、π6、如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是(
3、)A、3πB、6πC、5πD、4π7、(2016•宁波)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为( )A、30πcm2B、48πcm2C、60πcm2D、80πcm28、(2016•泰安)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为( )A、90°B、120°C、135°D、150°9、(2016•十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该
4、圆锥的高为( )A、10cmB、15cmC、10cmD、20cm10、(2016•宜宾)半径为6,圆心角为120°的扇形的面积是( )A、3πB、6πC、9πD、12π11、(2016•台湾)如图,有一内部装有水的直圆柱形水桶,桶高20公分;另有一直圆柱形的实心铁柱,柱高30公分,直立放置于水桶底面上,水桶内的水面高度为12公分,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为多少公分?( )A、4.5B、6C、8D、91
5、2、如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论,其中正确的个数是( ).①=; ②△OGH是等腰三角形; ③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+. A、1B、2C、3D、4二、填空题(共5题;共5分)13、(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为________cm.14、(201
6、6•福州)如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上________r下.(填“<”“=”“<”)15、(2016•常德)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________.16、(2016•苏州)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为________. 17、(2016•泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0
7、)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是________.三、综合题(共6题;共78分)18、(2016•泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.19、(2016•淄博)如图,正方形ABCD的对角线相交于点O,点
8、M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.(1)求证:=;(2)求证:AF⊥FM;(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.20、(2016•淮安)问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将
此文档下载收益归作者所有