欢迎来到天天文库
浏览记录
ID:29032461
大小:88.00 KB
页数:7页
时间:2018-12-16
《2018版高中数学 第三章 不等式 3.4.1 基本不等式的证明学案 苏教版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.4.1 基本不等式的证明学习目标 1.理解基本不等式的内容及证明.2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.知识点一 算术平均数与几何平均数思考 如图,AB是圆O的直径,点Q是AB上任一点,AQ=a,BQ=b,过点Q作PQ垂直AB于Q,连结AP,PB.如何用a,b表示PO,PQ的长度? 梳理 一般地,对于正数a,b,为a,b的________平均数,为a,b的________平均数.两个正数的几何平均数不大于它们的算术平均数,即≤.其几何意义如图中的PO≥P
2、Q.知识点二 基本不等式及其常见推论思考 如何证明不等式≤(a>0,b>0)? 梳理 ≤(a>0,b>0).当对正数a,b赋予不同的值时,可得以下推论:(1)ab≤()2≤(a,b∈R);(2)+≥2(a,b同号);(3)当ab>0时,+≥2;当ab<0时,+≤-2;(4)a2+b2+c2≥ab+bc+ca(a,b,c∈R).类型一 常见推论的证明例1 证明不等式a2+b2≥2ab(a,b∈R).引申探究证明不等式()2≤(a,b∈R). 反思与感悟 (1)本例证明的不等式成立的条件是a,b∈R,
3、与基本不等式不同.(2)本例使用的作差法与不等式性质是证明中常用的方法.跟踪训练1 已知a,b,c为任意的实数,求证:a2+b2+c2≥ab+bc+ca. 类型二 用基本不等式证明不等式例2 已知x,y都是正数.求证:(1)+≥2;(2)(x+y)(x2+y2)(x3+y3)≥8x3y3. 反思与感悟 利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”
4、.(2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.跟踪训练2 已知a,b,c都是正实数,求证:(a+b)(b+c)·(c+a)≥8abc. 类型三 用基本不等式比大小例3 某工厂生产某种产品,第一年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x(a,b,x均大于零),则x与的大小关系是________.反思与感悟 基本不等式≥一端为和,
5、一端为积,使用基本不等式比大小要擅于利用这个桥梁化和为积或者化积为和.跟踪训练3 设a>b>1,P=,Q=,R=lg,则P,Q,R的大小关系是________.1.若对任意x>0,≤a恒成立,则a的取值范围为________.2.若00,b>0,给出下列不等式:①a2+1>a;②≥4;③(a+b)≥4;④a2+9>6a.其中恒成立的是________.(填序号)1.两个不等式
6、a2+b2≥2ab与≥都是带有等号的不等式,对于“当且仅当…时,取‘=’”这句话的含义要有正确的理解.一方面:当a=b时,=;另一方面:当=时,也有a=b.2.在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或恒等式变形配凑成适当的数、式,以便于利用基本不等式.答案精析问题导学知识点一思考 PO==.易证Rt△APQ∽Rt△PBQ,那么PQ2=AQ·QB,即PQ=.梳理 算术 几何知识点二思考 ∵a+b-2=()2+()2-2·=(-)2≥0,当且仅当a=b时,等号成立,∴a+b≥2,∴≤,当
7、且仅当a=b时,等号成立.题型探究例1 证明 ∵a2+b2-2ab=(a-b)2≥0,∴a2+b2≥2ab.引申探究证明 由例1,得a2+b2≥2ab,∴2(a2+b2)≥a2+b2+2ab,两边同除以4,即得()2≤,当且仅当a=b时,取等号.跟踪训练1 证明 ∵a2+b2≥2ab;b2+c2≥2bc;c2+a2≥2ca,∴2(a2+b2+c2)≥2(ab+bc+ca),即a2+b2+c2≥ab+bc+ca,当且仅当a=b=c时,等号成立.例2 证明 (1)∵x,y都是正数,∴>0,>0,∴+≥2=2,即+
8、≥2,当且仅当x=y时,等号成立.(2)∵x,y都是正数,∴x+y≥2>0,x2+y2≥2>0,x3+y3≥2>0.∴(x+y)(x2+y2)(x3+y3)≥2·2·2=8x3y3,即(x+y)(x2+y2)(x3+y3)≥8x3y3,当且仅当x=y时,等号成立.跟踪训练2 已知a,b,c都是正实数,求证:(a+b)(b+c)·(c+a)≥8abc.证明 ∵a,b,c都是正实数,∴a+b≥2>0,b
此文档下载收益归作者所有