2.2.1向量的加法运算及其几何意义教、学案

2.2.1向量的加法运算及其几何意义教、学案

ID:28976608

大小:168.50 KB

页数:7页

时间:2018-12-15

2.2.1向量的加法运算及其几何意义教、学案_第1页
2.2.1向量的加法运算及其几何意义教、学案_第2页
2.2.1向量的加法运算及其几何意义教、学案_第3页
2.2.1向量的加法运算及其几何意义教、学案_第4页
2.2.1向量的加法运算及其几何意义教、学案_第5页
资源描述:

《2.2.1向量的加法运算及其几何意义教、学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2.1向量的加法运算及其几何意义教学目标:1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点:理解向量加法的定义.学法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量

2、的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教具:多媒体或实物投影仪,尺规授课类型:新授课教学过程:一、设置情景:1、复习:向量的定义以及有关概念强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置ABC2、情景设置:(1)某人从A到B,再从B按原方

3、向到C,CAB则两次的位移和:(2)若上题改为从A到B,再从B按反方向到C,ABC则两次的位移和:(3)某车从A到B,再从B改变方向到C,ABC则两次的位移和:(4)船速为,水速为,则两速度和:二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.2、三角形法则(“首尾相接,首尾连”)如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b,规定:a+0-=0+aaaABCa+ba+baabbabba+ba探究:(1)两相向量的和仍是一个向量;(2)当向量与不

4、共线时,+的方向不同向,且

5、+

6、<

7、

8、+

9、

10、;OABaaabbb(3)当与同向时,则+、、同向,且

11、+

12、=

13、

14、+

15、

16、,当与反向时,若

17、

18、>

19、

20、,则+的方向与相同,且

21、+

22、=

23、

24、-

25、

26、;若

27、

28、<

29、

30、,则+的方向与相同,且

31、+b

32、=

33、

34、-

35、

36、.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加3.例一、已知向量、,求作向量+作法:在平面内取一点,作,则.4.加法的交换律和平行四边形法则问题:上题中+的结果与+是否相同?验证结果相同从而得到:1)向量加法的平行四边形法则(对于

37、两个向量共线不适应)2)向量加法的交换律:+=+5.向量加法的结合律:(+)+=+(+)证:如图:使,,则(+)+=,+(+)=∴(+)+=+(+)从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.三、应用举例:例二(P94—95)略练习:P95四、小结1、向量加法的几何意义;2、交换律和结合律;3、注意:

38、+

39、≤

40、

41、+

42、

43、,当且仅当方向相同时取等号.五、课后作业:P103第2、3题六、板书设计(略)2.2.1向量的加法运算及其几何意义课前预习学案预习目标:通过复习提问回顾向量定义及有关概念;利用问

44、题情景提出向量加法运算、给出实际背景。预习内容:1、复习:提问向量的定义以及有关概念。强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置ABC2、情景设置:(1)某人从A到B,再从B按原方向到C,CAB则两次的位移和:。(2)若上题改为从A到B,再从B按反方向到C,ABC则两次的位移和:。(3)某车从A到B,再从B改变方向到C,ABC则两次的位移和:。(4)船速为,水速为,则两速度和:。3、提出疑

45、惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;学习过程:1、向量的加法:叫做向量的加法.2、三角形法则(“”)如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即

46、a+b,规定:。ABCa+ba+baabbabba+ba探究:(1)两相向量的和仍是;(2)当向量与不共线时,+的方向,且

47、+

48、

49、

50、+

51、

52、;OABaaabbb(3)当与同向时,则+、、且

53、+

54、

55、

56、+

57、

58、,当与反向时,若

59、

60、>

61、

62、,则+的方向与相同,且

63、+

64、

65、

66、-

67、

68、;若

69、

70、<

71、

72、,则+的方向与相同,且

73、+b

74、

75、

76、-

77、

78、.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。