小学奥数:5-5-2 带余除法(二).教师版

小学奥数:5-5-2 带余除法(二).教师版

ID:28946740

大小:509.50 KB

页数:6页

时间:2018-12-15

小学奥数:5-5-2 带余除法(二).教师版_第1页
小学奥数:5-5-2 带余除法(二).教师版_第2页
小学奥数:5-5-2 带余除法(二).教师版_第3页
小学奥数:5-5-2 带余除法(二).教师版_第4页
小学奥数:5-5-2 带余除法(二).教师版_第5页
资源描述:

《小学奥数:5-5-2 带余除法(二).教师版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、5-5-2.带余除法(二)教学目标1.能够根据除法性质调整余数进行解题2.能够利用余数性质进行相应估算3.学会多位数的除法计算4.根据简单操作进行找规律计算知识点拨带余除法的定义及性质1、定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。这里:(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a本,这个a就可以理解为被除数,现在要

2、求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。2、余数的性质⑴被除数除数商余数;除数(被除数余数)商;商(被除数余数)除数;⑵余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.例题精讲模块一、带余除法的估算问题【例1】

3、修改31743的某一个数字,可以得到823的倍数。问修改后的这个数是几?【考点】带余除法的估算问题【难度】3星【题型】解答【解析】本题采用试除法。823是质数,所以我们掌握的较小整数的特征不适用,31743÷823=38……469,于是31743除以823可以看成余469也可以看成不足(823-469=)354,于是改动某位数字使得得到的新数比原来大354或354+823n也是满足题意的改动.有n=1时,354+823:1177,n=2时,354+823×2=2000,所以当千位增加2,即改为3时,有修改后的五位数33743为823的倍数.【

4、答案】33743【例1】有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【考点】带余除法的估算问题【难度】3星【题型】解答【关键词】小学数学夏令营【解析】由,知,一组是10或11人.同理可知,知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【答案】10【例2】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【考点】带余除法的估算问题【难度】

5、3星【题型】解答【解析】因为一个两位数除以13的商是6,所以这个两位数一定大于,并且小于;又因为这个两位数除以11余6,而78除以11余1,这个两位数为.【答案】83【例3】在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【考点】带余除法的估算问题【难度】3星【题型】解答【解析】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余0)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这

6、样的数.【答案】99【例4】托玛想了一个正整数,并且求出了它分别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.【考点】带余除法的估算问题【难度】3星【题型】解答【关键词】圣彼得堡数学奥林匹克【解析】除以3、6和9的余数分别不超过2,5,8,所以这三个余数的和永远不超过,既然它们的和等于15,所以这三个余数分别就是2,5,8.所以该数加1后能被3,6,9整除,而,设该数为,则,即(为非零自然数),所以它除以18的余数只能为17.【答案】17模块二、多位数的余数问题【例5】除以13所得余数是_____.【考点】多位数的余数

7、问题【难度】3星【题型】填空【解析】方法一、我们发现222222整除13,2000÷6余2,所以答案为22÷13余9。方法二、因为1001是13的倍数,所以每6个2能整除13,那么2000个2中6个一组可以分为333组余2,所以答案为22÷13余9【答案】9【巩固】的余数是多少?【考点】多位数的余数问题【难度】3星【题型】解答【解析】方法一:因为,所以连续6个6为一个周期.又因,而,故符合题意的余数是1.方法二:利用余数判别法⑹,因为连续6个6奇数节和偶数节的各位数字和抵消,而,且,故符合题意的余数是1.【答案】1【例2】除以41的余数是多少

8、?【考点】多位数的余数问题【难度】4星【题型】解答【解析】找规律:,,,,,……,所以77777是41的倍数,而,所以可以分成399段77777和1个7组成,那么它

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。