欢迎来到天天文库
浏览记录
ID:28940993
大小:232.50 KB
页数:8页
时间:2018-12-15
《数学中考冲刺:方案设计与决策型问题--知识讲解(提高)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、精品中考冲刺:方案设计与决策型问题—知识讲解(提高)【中考展望】方案设计与决策型问题对于考查学生的数学创新应用能力非常重要.如让学生设计图形、设计测量方案、设计最佳方案等都是近年考查的热点,题目多以解答题为主.方案设计与决策型问题是近几年的热点试题,主要利用图案设计或经济决策来解决实际问题.题型主要包括:1.根据实际问题拼接或分割图形;2.利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决问题,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.【方法点拨
2、】解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.解题策略:建立数学模型,如方程模型、不等式模型、函数模型、几何模型、统计模型等,依据所建的数学模型求解,从而设计方案,科学决策.【典型例题】类型一、利用方程(组)进行方案设计1.国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:运往地车
3、型甲地(元/辆)乙地(元/辆)大货车720800小货车500650(1)求这两种货车各多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【思路点拨】(1)设大货车用x辆,则小货车用18-x辆,根据运输228吨物资,列方程求解;(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8-a)辆,前往甲地的小货车为(9-a)辆,前往乙地的小货车为[10-(
4、9-a)]辆,根据表格所给运费,求出w与a的函数关系式;(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【答案与解析】精品解:(1)设大货车用x辆,小货车用y辆,根据题意得,解得答:大货车用8辆,小货车用10辆.(2)根据题意,得w=720a+800(8-a)+500(9-a)+650[10-(9-a)]=70a+11550,∴w=70a+11550(0≤a≤8且为整数).(3)16a+10(9-a)≥120,解得a≥5,又∵0≤a≤8,∴5≤a≤8且为整数,而w=70a+11550,k=70>0,w随a的增大而增大,∴当a=5时,
5、w最小,最小值为W=70×5+11550=11900(元)答:使总运费最少的调配方案是:5辆大货车,4辆小货车前往甲地;3辆大货车,6辆小货车前往乙地.最少运费为11900元.【总结升华】这是一道典型的三个“一次”携手结伴的中考试题,把一元一次方程(组)、一元一次不等式和一次函数有机地结合起来,和谐搭配,形成知识系统化、习题系列化,可谓“一石三鸟”.类型二、利用不等式(组)进行方案设计【高清课堂:方案设计与决策型问题例3】2.某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,
6、乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.(l)某个课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?【思路点拨】根据甲种花卉不超过349盆,乙种花卉不超过295盆,列出不等式组A、B两种园艺造型,求出设计方案种类.分别结算出各种方案所需成本,选出最低成本的方案.【答案与解析】解:⑴设搭建A种园艺造型x个,则搭建B种园艺造型(50-x)个.根据题意得解得,∵x为整数,∴x=31,32,3
7、3.∴精品可设计三种搭配方案:方案1:A种园艺造型31个,B种园艺造型19个;方案2:A种园艺造型32个,B种园艺造型18个;方案3:A种园艺造型33个,B种园艺造型17个.⑵∵B种造型的造价成本高于A种造型成本,∴B种造型越少,成本越低,故应选择方案3,成本最低.则应该搭配A种33个,B种17个.最低成本为:33×200+17×360=12720(元)答:应选择方案3成本最低,最低成本为12720元.【总结升华】本题考查了一元一次不等式组的实际应用,也可列出成本和搭配A种造型数量x之间的函数关系,用函数的性质求解;或直接算出三种方案的成
此文档下载收益归作者所有