欢迎来到天天文库
浏览记录
ID:28858655
大小:1.06 MB
页数:26页
时间:2018-12-14
《2018年中考数学考点总动员系列专题14反比例函数(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、考点十四:反比例函数聚焦考点☆温习理解1、反比例函数的概念一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。3、反比例函数的性质当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。当k<0时,函数图
2、像的两个分支分别在第二、四象限。在每个象限内,随x的增大而增大。4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。5、反比例函数中反比例系数的几何意义如下图,过反比例函数图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PMPN=。。名师点睛☆典例分类考点典例一、反比例函数的性质【例1】.(2017海南第14题)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数在第一象限内的图象与△ABC有交点,则k
3、的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【答案】C.考点:反比例函数的性质.【点睛】本题考查了反比例函数的性质,解决问题的关键是掌握函数的性质.【举一反三】1.(2017湖南张家界第8题)在同一平面直角坐标系中,函数y=mx+m(m≠0)与(m≠0)的图象可能是( )A. B.C. D.【答案】D.【解析】试题分析:A.由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以A选项错误;B.由反比例函数图象得m>0,则一次函数图象经过第一、二、三象限,所以B选项错误;C.由反比例函数图象得m<0,则一次函数图象经
4、过第二、三、四象限,所以C选项错误;D.由反比例函数图象得m<0,则一次函数图象经过第一、二、三象限,所以D选项正确.故选D.考点:反比例函数的图象;一次函数的图象.2.(河南郑州华夏中学2017年九年级数学中考模拟)点(﹣1,y1),(2,y2),(3,y3)均在函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y3<y1C.y1<y3<y2D.y1<y2<y3【答案】D考点典例二、反比例函数图象上点的坐标特征【例2】(2017湖南怀化第10题)如图,,两点在反比例函数的图象上,,两点在反比例函数的图象上,轴于点,轴于点,,,,则的值是()A.6
5、B.4C.3D.2【答案】D【解析】试题解析:连接OA、OC、OD、OB,如图:由反比例函数的性质可知S△AOE=S△BOF=
6、k1
7、=k1,S△COE=S△DOF=
8、k2
9、=﹣k2,∵S△AOC=S△AOE+S△COE,∴AC•OE=×2OE=OE=(k1﹣k2)…①,∵S△BOD=S△DOF+S△BOF,∴BD•OF=×(EF﹣OE)=×(3﹣OE)=﹣OE=(k1﹣k2)…②,由①②两式解得OE=1,则k1﹣k2=2.故选D.考点:反比例函数图象上点的坐标特征.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,
10、y)的横纵坐标的积是定值k,即xy=k.【举一反三】1.(2017湖南株洲第17题)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则= .【答案】=﹣.【解析】试题分析:如图,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数y1=(x>0)的图象上,∴k1=a•a=a²,Rt△BOC中,OB=2OC=2
11、a,∴BC==3a,∴B(a,﹣3a),∵B在函数y2=(x>0)的图象上,∴k2=﹣3a·a=﹣3a²,∴=﹣;故答案为:﹣.考点:反比例函数图象上点的坐标特征.2.(陕西西安市西北工业大学附属中学2017届九年级第九次适应性训练)如图,的一条直角边在轴上,双曲线经过斜边中点,与另一直角边交于点,若,则的值为__________.【答案】12【解析】解:作于,∵点、在双曲线上,∴,∵点为的中点,,∴,,∴,∵,∴,∴,即,∴.考点典例三、反比例函数图象上点的坐标与方程的关系【例
此文档下载收益归作者所有