4.2.3-2直线与圆的方程的应用

4.2.3-2直线与圆的方程的应用

ID:28753634

大小:193.50 KB

页数:6页

时间:2018-12-13

4.2.3-2直线与圆的方程的应用_第1页
4.2.3-2直线与圆的方程的应用_第2页
4.2.3-2直线与圆的方程的应用_第3页
4.2.3-2直线与圆的方程的应用_第4页
4.2.3-2直线与圆的方程的应用_第5页
资源描述:

《4.2.3-2直线与圆的方程的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、4、2、3直线与圆的方程的应用(二)【教学目标】1、坐标法求直线和圆的应用性问题;2、面积最小圆、中点弦问题的解决方法.【教学重难点】教学重点:坐标法求直线和圆的应用性问题.教学难点:面积最小圆、中点弦问题的解决方法.【教学过程】1、面积最小圆问题、中点弦轨迹问题例1、求通过直线与圆的交点,且面积最小的圆的方程.结论:解法一:利用过两曲线交点的曲线系.我们可以设圆的方程为.配方得到标准式方程如下所示,可以得到,当时,此时半径,所求圆的方程为.解法二:利用平面几何知识.以直线与圆的交点连线为直径的圆符合条件.把两个方程式

2、联立,消去,得.因为判别式大于零,我们可以根据根与系数的关系也即韦达定理得到线段的中点的横坐标为,,又半径(弦长公式),所以所求的圆的方程是:.解法三:我们可以求出两点的坐标,根据两点间距离公式和中点坐标公式求出半径和圆心,求出圆的方程.变式练习:求圆上的点到的最远、最近的距离。例2、已知圆O的方程为,求过点所作的弦的中点的轨迹.结论:解法一:参数法(常规方法)设过A所在的直线方程为y-2=k(x-1)(k存在时),P(x,y),则,消去y,得到如下方程所以我们可以得到下面结果,利用中点坐标公式及中点在直线上,得:(k

3、为参数).消去k得P点的轨迹方程为,当k不存在时,中点P(1,0)的坐标也适合方程.所以P点的轨迹是以点(1/2,1)为圆心,为半径的圆.解法二:代点法(涉及中点问题可考虑此法)我们可以设过点A的弦为MN,则可以设两点的坐标为.因为M、N都在圆上,所以我们可以得到,然后我们把两式向减可以得到:设P(x,y)则.所以由这个结论和M、N、P、A四点共线,可以得到.所以2x+[(y-2)/(x-1)]2y=0,所以P点的轨迹方程为6(x=1时也成立),所以P点的轨迹是以点(1/2,1)为圆心,为半径的圆.解法三:数形结合(利

4、用平面几何知识),由垂径定理可知,故点P的轨迹是以AO为直径的圆.变式练习:已知直线,是上一动点,过作轴、轴的垂线,垂足分别为、,则在、连线上,且满足的点的轨迹方程。反思总结:当堂检测:已知与曲线C:相切的直线交的正半轴与两点,O为原点,=a,,.(1)求线段中点的轨迹方程;(2)求的最小值.【板书设计】例1变式1例2变式2【作业布置】1、必做题:习题4.2B组的2、3、题;4、2、3直线与圆的方程的应用导学案(二)课前预习学案一、预习目标:利用直线与圆的位置关系及圆与圆的位置关系解决一些实际问题二、预习内容:1.你能

5、说出直线与圆的位置关系吗?2.解决直线与圆的位置关系,你将采用什么方法?三、提出疑惑1、;2、;3、。课内探究学案一、学习目标:(1)理解直线与圆的位置关系的几何性质;6(2)利用平面直角坐标系解决直线与圆的位置关系;(3)会用“数形结合”的数学思想解决问题.学习重难点:直线的知识以及圆的知识二、学习过程:1、面积最小圆问题、中点弦轨迹问题例1、求通过直线与圆的交点,且面积最小的圆的方程.变式练习:求圆上的点到的最远、最近的距离。例2、已知圆O的方程为,求过点所作的弦的中点的轨迹.6变式练习:已知直线,是上一动点,过作

6、轴、轴的垂线,垂足分别为、,则在、连线上,且满足的点的轨迹方程。反思总结:当堂检测:已知与曲线C:相切的直线交的正半轴与两点,O为原点,=a,,.(1)求线段中点的轨迹方程;(2)求的最小值.课后练习与提高1、M(为圆内异于圆心的一点,则直线与该圆的位置关系为A、相切B、相交C、相离D、相切或相交2.从直线:上的点向圆引切线,则切线长的最小值为A、B、C、D、3、已知分别是直线上和直线外的点,若直线的方程是6,则方程表示A、与重合的直线B、过P2且与平行的直线C、过P1且与垂直的直线D、不过P2但与平行的直线4.如果实

7、数.5、已知集合A={(x,y)|=2,x、y∈R},B={(x,y)|4x+ay=16,x、y∈R},若A∩B=,则实数a的值为.6.等腰三角形ABC的顶点,求另一端点C的轨迹方程.6亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!成绩肯定会很理想的,在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考出好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成的试卷吧!6

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。