欢迎来到天天文库
浏览记录
ID:28685188
大小:112.74 KB
页数:5页
时间:2018-12-12
《2016-2017学年人教a版选修4-5 综合法与分析法 教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:第02课时不等式的证明方法之二:综合法与分析法教学目标:1、结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法。2、了解分析法和综合法的思考过程。教学重点:会用综合法证明问题;了解综合法的思考过程。教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法。教学过程:一、引入:综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法。由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点。所谓综合法,即从已知条件出发,根据不等式的性质或已知的
2、不等式,逐步推导出要证的不等式。而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中。前一种是“由因及果”,后一种是“执果索因”。打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”。二、典型例题:例1、已知,且不全相等。求证:分析:用综合法。例2、设,求证证法一分析法要证成立.只需证成立,又因,只需证成立,又需证成立,即需证成立.而显然成立.由此命题得证。证法二综合法注意到,即,由上式即得,从而成立。议一议:根据上面的例证,你能指出综合法和分
3、析法的主要特点吗?例3、已知a,b,m都是正数,并且求证:(1)证法一要证(1),只需证(2)要证(2),只需证(3)要证(3),只需证(4)已知(4)成立,所以(1)成立。上面的证明用的是分析法。下面的证法二采用综合法。证法二因为是正数,所以两边同时加上得两边同时除以正数得(1)。例4、证明:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为,则周长为的圆的半径为,截面积为;周长为的正方形为,截面积为。所以本题只
4、需证明。证明:设截面的周长为,则截面是圆的水管的截面面积为,截面是正方形的水管的截面面积为。只需证明:。为了证明上式成立,只需证明。两边同乘以正数,得:。因此,只需证明。上式显然成立,所以。这就证明了:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。例5、证明:。证法一:因为(2)(3)(4)所以三式相加得(5)两边同时除以2即得(1)。证法二:所以(1)成立。例6、证明:(1)证明(1)(2)(3)(4)(5)(5)显然成立。因此(1)成立。例7、已知都是正数,求证并指出等号在什么时候
5、成立?分析:本题可以考虑利用因式分解公式着手。证明:==由于都是正数,所以而,可知即(等号在时成立)探究:如果将不等式中的分别用来代替,并在两边同除以3,会得到怎样的不等式?并利用得到的结果证明不等式:,其中是互不相等的正数,且.三、课堂小结:解不等式时,在不等式的两边分别作恒等变形,在不等式的两边同时加上(或减去)一个数或代数式,移项,在不等式的两边同时乘以(或除以)一个正数或一个正的代数式,得到的不等式都和原来的不等式等价。这些方法,也是利用综合法和分析法证明不等式时常常用到的技巧。四、课堂练习:1、已知求证:2、已知求证3、已知求证4、
6、已知求证:(1)(2)5、已知都是正数。求证:(1)(2)6、已知都是互不相等的正数,求证五、课后作业:课本25页第1、2、3、4题。六、教学后记:亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!成绩肯定会很理想的,在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考出好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成的试卷吧!
此文档下载收益归作者所有