测量误差理论和测量数据处理.doc

测量误差理论和测量数据处理.doc

ID:28563810

大小:345.50 KB

页数:8页

时间:2018-12-11

测量误差理论和测量数据处理.doc_第1页
测量误差理论和测量数据处理.doc_第2页
测量误差理论和测量数据处理.doc_第3页
测量误差理论和测量数据处理.doc_第4页
测量误差理论和测量数据处理.doc_第5页
资源描述:

《测量误差理论和测量数据处理.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、课题名称:测量误差理论和测量数据处理学院:海滨学院姓名:杜剑学号:14410108数据处理1.变值系统误差的判定1.1马利科夫判据马利科夫判据是常用的判别有无累进性系统误差的方法。把n个等精密度测量值所对应的残差按测量顺序排列,把残差分成前后两部分求和,再求其差值。若测量中含有累进性系统误差,则前后两部分残差和明显不同,差值应明显地异于零。所以马利科夫判据是根据前后两部分残差和的差值来进行判断。当前后两部分残差和的差值近似等于零,则上述测量数据中不含累进性系统误差,若其明显地不等于零(与最大的残差值相当或更大),则说明上述测量数据中存在累进

2、性系统误差。n为偶数时n为奇数时则存在累进性系差;否则不存在累进性系差。当1.2阿卑-赫梅特判据若通常用阿卑—赫梅特判据来检验周期性系统误差的存在。把测量数据按测量顺序排列,将对应的残差两两相乘,然后求其和的绝对值,再与总体方差的估计相比较,若式成立则可认为测量中存在周期性系统误差。当我们按照随机误差的正态分布规律检查测量数据时,如果发现应该剔除的粗大误差占的比例较大时(粗大误差的剔除在下节作详细介绍),就应该怀疑测量中含有非正态分布的系统误差。存在变值系统误差的测量数据原则上应舍弃不用。但是,若虽然存在变值系统误差,但残差的最大值明显地小

3、于测量允许的误差范围或仪器规定的系统误差范围,则测量数据可以考虑使用,在继续测量时需密切注意变值系统误差的情况。周期性系差的判别则存在周期性系差;否则不存在周期性系差。2.粗大误差剔除的常用准则2.1莱特准则则为异常值剔除不用;否则不存在异常值。正态分布,n>10的情况莱特检验法是一种测量数据服从正态分布情况下判别异常值的方法,主要用于测量数据数量较多的情况,一般要求测量次数n大于10。2.2肖维纳准则则为异常值应剔除不用。否则不存在异常值。正态分布,n>5的情况肖维纳检验法也是以正态分布作为前提的,假设多次重复测量所得n个测量值中,当残差

4、绝对值时,则认为是粗大误差。式中n是系数,可通过查附录2的肖维纳准则表得到。要注意的是肖维纳检验法是建立在测量数据服从正态分布的前提下,要求在n>5时使用。另外,肖维纳检验法没有给出剔除数据判据对应得置信概率。2.3格拉布斯准则则为异常值应剔除不用。否则不存在异常值。格拉布斯检验法是在未知总体标准偏差的情况下,对正态样本或接近正态样本异常值进行判别的一种方法,是一种从理论上就很严密、概率意义明确、经实验证明效果较的判据。对g值根据重复测量次数n及置信概率由附录3的格拉布斯准则表查出。注意以下几个问题:(1)当偏离正态分布、测量次数少时,检验

5、可靠性将受影响。(2)逐个剔除原则:若有多个可疑数据同时超过检验所定置信区间,应逐个剔除,先剔出残差绝对值最大的,然后重新计算标准偏差估计值,再行判别。若有多个相同数据超出范围时,也应逐个剔除。(3)在一组测量数据中,可疑数据应极少;反之,说明系统工作不正常。(4)剔除异常数据是一件需慎重对待的事。题目:参考例2-2-6的解题过程,用C语言或MATLAB设计测量数据处理的通用程序,要求如下: (1)提供测试数据输入、粗大误差判别准则等的人机界面; (2)编写程序使用说明; (3)通过实例来验证程序的正确性。 程序如下:#include

6、dio.h>#includemain(){floatx[50],v[50],sum=0,dx,y=0,s2,vmax,v1=0,v2=0,v3=0;doublech,g;doublech1[33]={1.65,1.73,1.79,1.86,1.92,1.96,2.00,2.04,2.07,2.10,2.13,2.16,2.18,2.20,2.22,2.24,2.26,2.28,2.30,2.32,2.33,2.34,2.35,2.37,2.38,2.39,2.45,2.50,2.58,2.64,2.74,2.81,3.02}

7、;doubleg1[28]={1.15,1.46,1.67,1.82,1.94,2.03,2.11,2.18,2.23,2.29,2.33,2.37,2.41,2.44,2.47,2.50,2.53,2.56,2.58,2.60,2.62,2.64,2.66};Doubleg2[28]={1.16,1.49,1.75,1.94,2.10,2.22,2.32,2.41,2.48,2.55,2.61,2.66,2.71,2.75,2.79,2.82,2.85,2.88,2.91,2.94,2.96,2.99,3.10};intn,i,j,u;p

8、rintf("请输入数据个数n=");scanf("%d",&n);printf("请输入%d个数据:",n);for(i=0;i

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。