欢迎来到天天文库
浏览记录
ID:28505628
大小:261.00 KB
页数:6页
时间:2018-12-10
《初三第二轮复习专题五数形结合思想.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、初三第二轮复习专题五:数形结合思想【知识梳理】数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.【课前预习】1、实数、b在数轴上的位置如图所示,化简=_____
2、____.2、已知不等式组的整数解共有2个,则的取值范围是_______.3、如图,已知函数y=x+b和y=x+3的图象交点为P,则不等式x+b>x+3的解集为__________.4、如图,方程组的解是__________.5、如图,在矩形ABCD中,AB=4,BC=6,当直角三角板MPN的直角顶点P在BC边上移动时,直角边MP始终经过点A,设直角三角板的另一直角边PN与CD相交于点Q.BP=x,CQ=y,那么y与x之间的函数图象大致是( )-6-【例题精讲】例1、当代数式取最小值时,相应的x的取值范围是_________.例2、已知二次函数y=x2+bx+c的图象如图所示,若关于x的方程
3、x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k>3B.k=3C.k<3D.无法确定例3、如图,函数y1=和y2=x+的图象相交于(-1,1),(2,2)两点.当y1>y2时,x的取值范围是()A.x<-1B.-12D.x<-1或x>2例4、如图,C为BD上的一动点,分别过点B、D作ABBD,EDBD,连接AC,EC,AB=5,DE=1,BD=8,设CD=.(1)用含的代数式表示AC+CE=.(2)当点C满足时时,AC+CE的值最小;(3)根据(2)规律和结论,请构图求出代数式的最小值.例4、如图,在平面直角坐标系xOy中,AB在x轴上,AB=10,以AB
4、为直径的⊙O′与y轴正半轴交于点C,连接BC、AC,CD是⊙O′的切线,AD⊥CD于点D,tan∠CAD=,抛物线y=ax2+bx+c过A、B、C三点.(1)求证:∠CAD=∠CAB;(2)①求抛物线的解析式;②判定抛物线的顶点E是否在直线CD上,并说明理由;(3)在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.-6-【巩固练习】1、如图为二次函数y=x2+bx+c的图象,在下列说法中:①c<0②方程x2+bx+c=0的根是x1=-1,x2=3③+b+c>0④当x>1时,y随x的增大而增大.正确的说法有__________
5、.2、如图,直线y=x+2与双曲线y=在第二象限有两个交点,那么m的取值范围在数轴上表示为()3、如图,在等腰AABC中,∠ABC=90°,D为AC边上的中点,过点D作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.【课后作业】班级姓名一、必做题:1、二次函数y=ax2+bx+c的图象如图所示,反比例函数y=与正比例函数y=bx在同一坐标系内的大致图象是()2、如图,AB为半圆的直径,点P为AB上一动点,动点P从点A出发,沿AB匀速运动到点B,运动时间为t,分别以AP与PB-6-为直径作半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为( )3、如图,抛物线y=x
6、2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()A.x>1B.x<-1C.07、B的实际意义;(2)求烧杯的底面积;(3)若烧杯的高为9cm,求注水的速度及注满水槽所用的时间.6、如图,已知反比例函数y=(k≠0)的图象经过点(,8),直线y=-x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另—个交点为P,连接OP、CQ,求△OPQ的面积.-6-二、选做题:7、如图,在
7、B的实际意义;(2)求烧杯的底面积;(3)若烧杯的高为9cm,求注水的速度及注满水槽所用的时间.6、如图,已知反比例函数y=(k≠0)的图象经过点(,8),直线y=-x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另—个交点为P,连接OP、CQ,求△OPQ的面积.-6-二、选做题:7、如图,在
此文档下载收益归作者所有