11.2 一次函数.doc

11.2 一次函数.doc

ID:28454621

大小:27.00 KB

页数:8页

时间:2018-12-10

11.2 一次函数.doc_第1页
11.2 一次函数.doc_第2页
11.2 一次函数.doc_第3页
11.2 一次函数.doc_第4页
11.2 一次函数.doc_第5页
资源描述:

《11.2 一次函数.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、11.2一次函数11.2一次函数§11.2.1正比例函数教学目标1.认识正比例函数的意义.2.掌握正比例函数解析式特点.3.理解正比例函数图象性质及特点.4.能利用所学知识解决相关实际问题.教学重点1.理解正比例函数意义及解析式特点.2.掌握正比例函数图象的性质特点.3.能根据要求完成转化,解决问题.教学难点正比例函数图象性质特点的掌握.教学过程Ⅰ.提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.6万千米外的澳大利亚发现了它.1.这只百余克重的小鸟大约平均每天飞行多少千

2、米(精确到10千米)?2.这只燕鸥的行程(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:2600÷(30×4+7)≈200()若设这只燕鸥每天飞行的路程为200,那么它的行程(千米)就是飞行时间x(天)的函数.函数解析式为:=200x(0≤x≤127)这只燕鸥飞行1个半月的行程,大约是x=4时函数=200x的值.即=200×4=9000()以上我们用=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是

3、近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节就学习.Ⅱ.导入新首先我们思考这样一些问题,看看变量之间的对应规律可用怎样的函数表示?这些函数有什么共同特点?1.圆的周长L随半径r的大小变化而变化.2.铁的密度为7.8g/3.铁块的质量(g)随它的体积V(3)的大小变化而变化.3.每个练习本的厚度为0..一些练习本摞在一些的总厚度h()随这些练习本的本数n的变化而变化.4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度

4、T(℃)随冷冻时间t(分)的变化而变化.答应:1.根据圆的周长公式可得:L=2r.2.依据密度公式p=可得:=7.8V.3.据题意可知:h=0.n.4.据题意可知:T=-2t.我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和=200x的形式一样.一般地,形如=x(是常数,≠0)的函数,叫做正比例函数(prprtinalfun-tin),其中叫做比例系数.我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?[活动一]画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点

5、,考虑两个函数的变化规律.1.=2x2.=-2x结论:1.函数=2x中自变量x可以是任意实数.列表表示几组对应值:x-3-2-10123-6-4-20246画出图象如图(1).2.=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:x-3-2-101236420-2-4-6画出图象如图(2).3.两个图象的共同点:都是经过原点的直线.不同点:函数=2x的图象从左向右呈上升状态,即随着x的增大也增大;经过第一、三象限.函数=-2x的图象从左向右呈下降状态,即随x增大反而减小;经过第二、四象限.尝试练习:在同一坐标系

6、中,画出下列函数的图象,并对它们进行比较.1.=x2.=-xx-6-4-20246=x-3-2-10123=-x3210-1-2-3比较两个函数图象可以看出:两个图象都是经过原点的直线.函数=x的图象从左向右上升,经过三、一象限,即随x增大也增大;函数=-x的图象从左向右下降,经过二、四象限,即随x增大反而减小.让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律:正比例函数=x(是常数,≠0)的图象是一条经过原点的直线.当x>0时,图象经过三、一象限,从左向右上升,即随x的增大也增大;当&l

7、t;0时,图象经过二、四象限,从左向右下降,即随x增大反而减小.正是由于正比例函数=x(是常数,≠0)的图象是一条直线,我们可以称它为直线=x.[活动二]经过原点与点(1,)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.结论:经过原点与点(1,)的直线是函数=x的图象.画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(

8、1,).因为两点可以确定一条直线.Ⅲ.随堂练习用你认为最简单的方法画出下列函数图象:1.=x2.=-3xⅣ.时小结本节我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.Ⅴ.后作

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。