1.2.1 有理数.doc

1.2.1 有理数.doc

ID:28454278

大小:26.00 KB

页数:13页

时间:2018-12-10

1.2.1 有理数.doc_第1页
1.2.1 有理数.doc_第2页
1.2.1 有理数.doc_第3页
1.2.1 有理数.doc_第4页
1.2.1 有理数.doc_第5页
资源描述:

《1.2.1 有理数.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1.2.1有理数1211.2.1有理数1211.2.1有理数1211.2.1有理数1211.2.1有理数121有理数教学任务分析教学目标知识技能理解有理数的含义,能够把给出的有理数分类、了解0在有理数分类中的作用数学思考经过本节的学习,使学生树立分类讨论的观点和能够正确地进行分类的能力解决问题培养学生独立发现问题、分析问题、解决问题的能力情感态度通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育重点会把所给的有理数进行正确的分类难点掌握两种有理数的分类方法教学流程安排活动流程图活动内容和目的一、提出问题二、初步分析解决问题三、知识应用,拓展创新四

2、、作业创设问题情景,复习所学知识,同时引出新的问题――有理数的分类.解决问题,引导学生进行对有理数进行分类,从而体会分类讨论的数学思想.培养学生灵活的思维能力.巩固新知教学过程设计一、创设问题情景复习所学知识,同时引出新的问题――有理数的分类.问题1:有了负数以后,我们学过的数有哪些?学生活动设计:学生根据所学内容,回忆所学过的数,同时举出相应的例子,一可以让学生复习旧的知识,二可以在所提问题中发现新的知识学生举例:1,2,-1,-3,,0等问题2:在上述列举的数中,我们可以怎样进行分类?学生活动设计:学生根据数的特征进行分类,显然可以把小学学过的数(正数)

3、分成一类――正数,把正数前面加负号(负数)的数分成一类――负数,0既不是正数也不是负数;也可以分成整数和分数,于是有下列分类:正整数,如:1、2、3零:0负整数:-1,-2,-3正分数:负分数:教师活动设计:引导学生理解有理数以及有理数的分类:正整数,零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数,这里的分数特指是分母不为1的分数,整数有时可以认为是分母是1的分数.二、解决问题引导学生进行对有理数进行分类,从而体会分类讨论的数学思想.问题3:如何对有理数进行分类?学生活动设计:根据以上知识学生进行分类.或把一些数放在一起,就组成一个数的集合

4、,简称数集.所有的有理数组成的数集叫做有理数集,所有整数组成的数集叫做整数集.问题4:你能解决下列问题吗?谈谈你的看法?(1)0是整数吗?是正数吗?是有理数吗?(2)-是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?(4)下列有理数中,哪些是整数?哪些是分数?哪些是正数?哪些是负数?-7、101、89、0、-067、、〔解答〕(1)0是整数、不是正数但是有理数(2)-是整数、负数、有理数(3)自然数是整数,不是所有的自然数是正数(比如0),所有的自然数都是有理数(4)整数:-7、89、0分数:101、-067、、正数:101、89

5、、负数:-7、-067、学生活动设计:学生独立思考上述问题,必要时进行适当的讨论,然后学生进行适当的交流,个别同学在交流中逐步完善自己对问题的看法.三、知识应用,拓展创新我们已经能够对有理数进行合理的分类,共有两种分类方法,下面我们就利用这两种分类方法解决下列问题.问题:把下列各数填在表示相应集合的大括号中:+6、-8、2,-04,0,-,91,整数集合;分数集合;非负数集合;正数集合;负数集合.解:整数集合分数集合非负数集合正数集合负数集合学生活动设计:(1)把一些数看作一个整体,那么这个整体就叫这些数的集合.其中的每一个数叫做这个集合的一个元素.(2)特

6、别要注意“零”是整数集合、非负数集合、有理数集合中的一个元素;“零”不仅表示“没有”而且具有非常确定的内容,如零时、零度;“零”是正负数的界限;“零”是偶数;“零”能被任何非零数整除;“零”也是一个不可缺少的数码;在数的表示中起着十分重要的作用.(3)非负有理数包括正有理数和零,在数学里,“正”和“整”不能通用,是有区别的;正相对于负说;整数是相对于分数而言的.问题6:如图,大圆覆盖的区域表示有理数的范围,中圆覆盖的区域表示整数的范围,小圆覆盖的区域表示正整数的范围.小圆和中圆把大圆覆盖的区域分割为无公共部分的A、B、三个部分,那么(1)A、B、分别表示什么

7、区域?(2)请将下列各数填入相应的区域内:-73、-4、、0、+24、+3、+、学生活动设计:学生认真读题,仔细分析问题所涉及的细节,分析出A区域表示的数是有理数但不是整数,从而得到A区域表示的数应该是分数,B区域表示的数是整数但不是正整数,从而得到B区域应该是非正整数(0和负整数),区域显然是正整数,问题(1)解决.有了以上分析问题(2)容易解决.教师活动设计:引导学生进行自主分析问题,在分析问题的过程抓住细节,启发学生进行解决问题,在学生没有思路时进行适当的提示等.四、小结和作业小结:1本节内容:有理数以及分类.2重点内容:有理数的两种分类方法、能够对所

8、给的数进行分类.作业:P10练习P17习题121

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。