欢迎来到天天文库
浏览记录
ID:28335650
大小:175.50 KB
页数:14页
时间:2018-12-09
《中学数学数字找规律题技巧汇集》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。 初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b
2、,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a1+(n-1)b。例:4、10、16、22、28……,求第n位数。分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1)6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。第n项为:an=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用
3、求法。 基本思路是:1、求出数列的第n-1位到第n位的增幅; 2、求出第1位到第第n位的总增幅; 3、数列的第1位数加上总增幅即是第n位数。举例说明:2、5、10、17……,求第n位数。分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+n2-1=n2+1此解法虽然较烦,但是此类题的通用
4、解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。(四)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17、….分析:数列2、3、5、9,17…。的增幅为1、2、4、8….即增幅为等比数列,比为:2。那么,增幅数列(等比数列)1、2、4、8….的和为多少求出来加上第一位数就是第n位数,即增幅数列(等比数列)1、2、4、8….的和为:设:s=1+2+4+8+…+2n-2,2s=2+4+8+16…+2n-12s-s=2n-1-1,所以:第n位数为:a1+
5、s=2+2n-1-1=2n-1+1资料.(五)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。 例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是
6、100,第n个数是n。解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较: 给出的数:0,3,8,15,24,……。(此题也是二级等差数列,可以用上面的第三的种方法) 序列号: 1,2,3,4,5,……。容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。也可以用另一种方法:序列号:1,2,3,4,5,……。给出的数:0,3,8,15,24,……。1×01×31×81×151×24……。2
7、×43×54×6……。……。可得(n-1)(n+1)=n2-1(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。例如:1,9,25,49,(81),(121),的第n项为(2n-1)2,分析:序列号:1,2,3,4,5........,从中可以看出n=2时,正好是(2×2-1)2,n=3时,正好是(2×3-1)2,以此类推。(三)看例题:1.2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18,....,答案与3有关且是n的3次幂
8、,即:n3+12.2、4、8、16.......增幅是2、4、8.......答案与2的乘方有关,即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到新数列的第n项
此文档下载收益归作者所有