欢迎来到天天文库
浏览记录
ID:28243217
大小:189.50 KB
页数:11页
时间:2018-12-08
《中考二次函数压轴题目(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、中考二次函数压轴题(3)1.如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)求证:1.E点在y轴上;2.如果有一抛物线经过A,E,C三点,求此抛物线方程.3.如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.C(1+k,-3)图②A(2,-6)BOxE′yC(1,-3)A(2,-6)BDOxEy2.如图,已知点A(0,1)、C(4,3)、E(,),P是以AC为对角线的矩形ABCD内部(不在各
2、边上)的—个动点,点D在y轴,抛物线y=ax2+bx+1以P为顶点.(1)说明点A、C、E在一条条直线上;(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;xOPDCABy(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点.这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.3.在平面直角坐标系中,A(-1,0),B(3,0).(1)若抛物线过A,B两点,且与y轴交于点(0,-3),求此抛物线的顶点坐标;(2)如图,小敏发
3、现所有过A,B两点的抛物线如果与y轴负半轴交于点C,M为抛物线的顶点,那么△ACM与△ACB的面积比不变,请你求出这个比值;ABCMOxy(3)若对称轴是AB的中垂线l的抛物线与x轴交于点E,F,与y轴交于点C,过C作CP∥x轴交l于点P,M为此抛物线的顶点.若四边形PEMF是有一个内角为60°的菱形,求次抛物线的解析式.4.已知:如图1,直线y=kx+3(k>0)交x轴于点B,交y轴于点A,以A点为圆心,AB为半径作⊙A交x轴于另一点D,交y轴于点E、F两点,交直线AB于C点,连结BE、CF,∠CBD的平分线交CE于点H.(1)求证:BE=HE;(2
4、)若AH⊥CE,Q为上一点,连结DQ交y轴于T,连结BQ并延长交y轴于G,求AT•AG的值;T(3)如图2,P为线段AB上一动点(不与A、B两点重合),连结PD交y轴于点M,过P、M、B三点作⊙O1交y轴于另一点N,设⊙O1的半径为R,当k=时,给出下列两个结论:①MN的长度不变;②的值不变.其中有且只有一个结论是正确的,请你判断哪一个结论正确,证明正确的结论并求出其值.5.如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.(1)求抛物线的解析式;(2)点E
5、是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90º.①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为________,数量关系为____________.图甲图乙图丙②当点D在线段BC的延长线上时,
6、如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若AC=,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.7.如图,在平面直角坐标系中,的边在轴上,且,以为直径的圆过点.若点的坐标为,,A、B两点的横坐标,是关于的方程的两根.(1)求、的值;(2)若平分线所在的直线交轴于点,试求直线对应的一次函数解析式;yxNBACODMl(3)过点任
7、作一直线分别交射线、(点除外)于点、.则的是否为定值?若是,求出该定值;若不是,请说明理由.8.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)
8、S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由。9.如图,平行四
此文档下载收益归作者所有