欢迎来到天天文库
浏览记录
ID:28208664
大小:59.50 KB
页数:9页
时间:2018-12-08
《多重共线性和非线性回归问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、-多重共线性和非线性回归的问题前几天她和我说,在百度里有个人连续追着我的回答,三次说我的回答错了。当时非常惊讶,赶紧找到那个回答的问题,看看那个人是怎么说。最终发现他是说多重共线性和非线性回归的问题,他认为多个自变量进行不能直接回归,存在共线性的问题,需要进行因子分析(或主成分分析);说非线性回归不能转换成线性回归的方法,这里我详细说说这两方面的问题到底是怎么回事(根据我的理解),我发现很多人很怕这个多重共线性的问题,听到非线性回归,脑袋就更大了。。。 (1)多重共线性问题 我们都知道在进行多元回归
2、的时候,特别是进行经济上指标回归的时候,很多变量存在共同趋势相关性,让我们得不到希望的回归模型。这里经常用到的有三种方法,而不同的方法有不同的目的,我们分别来看看: 第一个,是最熟悉也是最方便的——逐步回归法。 逐步回归法是根据自变量与因变量相关性的大小,将自变量一个一个选入方法中,并且每选入一个自变量都进行一次检验。最终留在模型里的自变量是对因变量有最大显著性的,而剔除的自变量是与因变量无显著线性相关性的,以及与其他自变量存在共线性的。用逐步回归法做的多元回归分析,通常自变量不宜太多,一般十几个
3、以下,而且你的数据量要是变量个数3倍以上才可以,不然做出来的回归模型误差较大。比如说你有10个变量,数据只有15组,然后做拟合回归,得到9个自变量的系数,虽然可以得到,但是精度不高。这个方法我们不仅可以找到对因变量影响显著的几个自变量,还可以得到一个精确的预测模型,进行预测,这个非常重要的。而往往通过逐步回归只能得到几个自变量进入方程中,有时甚至只有一两个,令我们非常失望,这是因为自变量很多都存在共线性,被剔除了,这时可以通过第二个方法来做回归。 第二个,通过因子分析(或主成分分析)再进行回归。 这种方
4、法用的也很多,而且可以很好的解决自变量间的多重共线性。首先通过因子分析将几个存在共线性的自变量合为一个因子,再用因子分析得到的几个因子和因变量做回归分析,这里的因子之间没有显著的线性相关性,根本谈不上共线性的问题。通过这种方法可以得到哪个因子对因变量存在显著的相关性,哪个因子没有显著的相关性,再从因子中的变量对因子的载荷来看,得知哪个变量对因变量的影响大小关系。而这个方法只能得到这些信息,第一它不是得到一个精确的,可以预测的回归模型;第二这种方法不知道有显著影响的因子中每个变量是不是都对因变量有显著的影响,比如说因子分
5、析得到三个因子,用这三个因子和因变量做回归分析,得到第一和第二个因子对因变量有显著的影响,而在第一个因子中有4个变量组成,第二个因子有3个变量组成,这里就不知道这7个变量是否都对因变量存在显著的影响;第三它不能得到每个变量对因变量准确的影响大小关系,而我们可以通过逐步回归法直观的看到自变量前面的系数大小,从而判断自变量对因变量影响的大小。 第三个,岭回归。 通过逐步回归时,我们可能得到几个自变量进入方程中,但是有时会出现自变量影响的方向出现错误,比如第一产业的产值对国民收入是正效应,而可能方程中的系数为
6、负的,这种肯定是由于共线性导致出现了拟合失真的结果,而这样的结果我们只能通过自己的经验去判断。通常我们在做影响因素判断的时候,不仅希望得到各个因素对因变量真实的影响关系,还希望知道准确的影响大小,就是每个自变量系数的大小,这个时候,我们就可以通过岭回归的方法。.--- 岭回归是在自变量信息矩阵的主对角线元素上人为地加入一个非负因子k,从而使回归系数的估计稍有偏差、而估计的稳定性却可能明显提高的一种回归分析方法,它是最小二乘法的一种补充,岭回归可以修复病态矩阵,达到较好的效果。在SPSS中没有提供岭回归的模块
7、,可以直接点击使用,只能通过编程来实现,当然在SAS、Matlab中也可以实现。做岭回归的时候,需要进行多次调试,选择适当的k值,才能得到比较满意的方程,现在这个方法应用越来越普遍。在07年的时候,我的一个老师还觉得这个方法是他的看家本领,但是现在很多人都会这个方法,而且用的越来越多了,得到的结果也非常合理。 特别提醒的是:多重共线性说的是变量之间线性关系,和非线性不要混淆了。多组变量之间两种极端的关系是完全多重共线性关系和完全非线性关系,即完全是平行直线的关系和完全无规则的曲线关系(是什么形状,还真
8、不好形容,自己悟去吧^_^)。当然解决多重共线性问题的方法还有,比如差分微分模型,应用的很少,我估计是非常专业的人才会用的吧,呵呵,反正我不会这个方法。接下来说说非线性回归。 (2)非线性回归的问题。 非线性回归,顾名思义自变量和因变量是非线性的关系,比如平方、次方等等,但是大多数的非线性方程都可以转换成线性的
此文档下载收益归作者所有