高考中立体几何问题的热点题型

高考中立体几何问题的热点题型

ID:28168673

大小:178.60 KB

页数:16页

时间:2018-12-08

高考中立体几何问题的热点题型_第1页
高考中立体几何问题的热点题型_第2页
高考中立体几何问题的热点题型_第3页
高考中立体几何问题的热点题型_第4页
高考中立体几何问题的热点题型_第5页
资源描述:

《高考中立体几何问题的热点题型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考中立体几何问题的热点题型■特级教师 石朝华1.立体几何是高考的重要内容,每年基本上都是一个解答题,两个选择题或填空题.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性的存在问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).热点一 空间点、线、面的位置关系以空间几何体(主要是

2、柱、锥或简单组合体)为载体,通过空间平行、垂直关系的论证命制试题,主要考查公理4及线面平行与垂直的判定定理与性质定理,常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等.[典题1] 如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)[证明]在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,AB⊂

3、平面ABC,所以BB1⊥AB.又AB⊥BC,BC∩BB1=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)[证明] 证法一:如图①,取AB中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1.所以四边形FGEC1为平行四边形.所以C1F∥EG.又EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.① ②证法二:如图②,取AC的中点H,连接C1H,FH.因为H,F分别是AC,BC的中点,所以HF∥AB.又E,H

4、分别是A1C1,AC的中点,所以EC1綊AH,所以四边形EAHC1为平行四边形,所以C1H∥AE.又C1H∩HF=H,AE∩AB=A,所以平面ABE∥平面C1HF.又C1F⊂平面C1HF,所以C1F∥平面ABE.(3)[解] 因为AA1=AC=2,BC=1,AB⊥BC,所以AB==.所以三棱锥E-ABC的体积V=S△ABC·AA1=×××1×2=.1.证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.2.计算几何体的体积时,能直接用公式时,关键是确定几何体的高,若不能直接用公式时,注意进行体积的转化.一个正方体的平面展开

5、图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需要说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.(1)解:点F,G,H的位置如图所示.(2)解:平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG.又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,所以平面BEG∥平面ACH.(3

6、)证明:连接FH,与EG交于点O,连接BD.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG,同理DF⊥BG,又EG∩BG=G,所以DF⊥平面BEG.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种考查形式:(1)根据条件作出判断,再进一步论证.(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.[典题2] [2017·

7、山东济南调研]如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;(3)在线段BC1上是否存在点D,使得AD⊥A1B?若存在,试求出的值.(1)[证明] 在正方形AA1C1C中,A1A⊥AC.又平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC,AA1⊂平面AA1C1C.∴AA1⊥平面ABC.(2)[解] 由(1)知,AA1⊥AC,AA1⊥AB,由题意知,在△ABC中,AC=4,AB

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。