欢迎来到天天文库
浏览记录
ID:28147266
大小:387.00 KB
页数:9页
时间:2018-12-08
《专题-数列求及的基本方法及技巧》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、WORD格式整理版数列求和的基本方法与技巧一、利用常用求和公式求和:利用下列常用求和公式求和是数列求和的最基本最重要的方法。1、等差数列求和公式:2、等比数列求和公式:3、4、5、[例1]已知,求的前n项和.解:由由等比数列求和公式得(利用常用公式)===1-[例2]设Sn=1+2+3+…+n,n∈N*,求的最大值.解:由等差数列求和公式得,(利用常用公式)∴===∴当,即n=8时,学习参考好帮手WORD格式整理版二、错位相减法求和:这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要
2、用于求各项是由一个等差数列和一个等比数列的对应项之积构成的数列{an·bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列。例设数列满足,(1)求数列的通项公式;(2)令,求数列的前n项和。解:(Ⅰ)由已知,当n≥1时,。而所以数列{}的通项公式为。(Ⅱ)由知①从而②①-②得。即[例3]求和:………………………①解:由题可知,{}的通项是等差数列{2n-1}的通项与等比数列{}的通项之积设……………………….②(设制错位)①-②得(错位相减)再利用等比数列的求和公式得:∴学习参考好帮手
3、WORD格式整理版[例4]求数列前n项的和。解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{}的通项之积设…………………………………①………………………………②(设制错位)①-②得(错位相减)∴三、倒序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个。[例5]求证:证明:设…………………………..①把①式右边倒转过来得(反序)又由可得…………..……..②①+②得(反序相加)∴[例6]求的值解:设………….①将①
4、式右边反序得…………..②(反序)又因为①+②得(反序相加)=89∴S=44.5学习参考好帮手WORD格式整理版四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。形如:①,其中②例已知数列的通项公式为求数列的前项和.解:===[例7]求数列的前n项和:,…解:设将其每一项拆开再重新组合得(分组)当a=1时,=(分组求和)当时,=[例8]求数列{n(n+1)(2n+1)}的前n项和。解:设∴=将其每一项拆开
5、再重新组合得Sn==(分组)=(分组求和)=学习参考好帮手WORD格式整理版五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。把数列的通项分成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.适用于类似(其中是各项不为0的等差数列,为常数)的数列,以及部分无理数列和含阶乘的数列等.用裂项法求和,需要掌握一些常见的裂项方法。通项分解(裂项)如:(1)(2)(3)(4)(5)(6)(7)(8)例
6、已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=(nN*),求数列的前n项和.解:(Ⅰ)设等差数列的公差为d,因为,,所以有,解得,所以;==。(Ⅱ)由(Ⅰ)知,所以bn===,所以==,即数列的前n项和=。学习参考好帮手WORD格式整理版[例9]求数列的前n项和。解:设(裂项)则(裂项求和)==[例10]在数列{an}中,,又,求数列{bn}的前n项的和.解: ∵∴(裂项)∴数列{bn}的前n项和(裂项求和)==[例11]求证:解:设∵(裂项)∴(裂项求和)====∴ 原等式成立学
7、习参考好帮手WORD格式整理版六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°∵(找特殊性质项)∴Sn=(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°
8、)+cos90°(合并求和)=0[例13]数列{an}:,求S2002.解:设S2002=由可得……∵(找特殊性质项)∴ S2002=(合并求和)====5[例14]在各项均为正数的等比数列中,若的值.解:设由等比数列的性质(找特殊性质项)学习参考好帮手WORD格式整理版和对数的运算性质得(合并求和)===10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15]求之和.解:由于(
此文档下载收益归作者所有